Using Apache Iceberg

Date published: 2022-03-15
Date modified: 2022-06-01

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

| Contents | iii

Apache 1cebDerg fEaALUIES.........cvocee e 5
F N L= = o =N = (=P S 5
Create tADIE FEALUNE.....c.ece ettt sttt s e be s eese et et e e et e seeseeneeaeetesneerenteneeneens 6
Create table aS SEECE FEALUNE........eoeeeee et sttt e e e e e seeneesesneeneeeenes 7
Create table ... [TKE FEALUIE.......ccui ettt e sttt s e neeseeb e e sesaesbeseesenneenean 8
Create partitioned table as SEIECt FEALUIE...........ci e 8
DTS L o0z = = L =S 9
Describe table Metadata FEALUNE...........cocvieeere e et e s s nae e 10
DrOP TANIE FEALUME. ... ettt et e b e bt e bt bbbt b et b et b e e ebeseebese et e seebenneneas 11
EXPIre SNAPSNOLS FEALUIE........cuiieetireeieitet ettt b et b e b e bbbt e bbbt b e b e s b e sbenes 11
INSErt tAD]@ A FEALUNE......c.eeeeeeeeeeetece ettt st e e e e e s e seeseebesbesaesrenbeneeseenean 12
Load data iNPAEN FEALUIE...........ciriiieee bbbttt b e n e 13
Load or replace partition datal fEBIUNE............ceiiiiiirieeee bbb 13
e e s L= o YT T = (= 14
Materialized VIEW reDUITT FERLUIE..........ooiie et re e s bt e snenas 15
IMEIOE FEALUIE......e.ecveeete ettt b e b e bt e b e bbb et b et e b e e e b e s e e b e seeb e se ek e seeb e sben e sbenesbenesbeneas 17
Migrate Hive table tO 1CEEIg fEAIUME.... ..o 18

Changing the Metadata |OCELION..........c.ceeriiiriiireee bbb 18
FIEXIDIE PAMTITIONING. ...ttt b bbb bbbt bbb et b e e b e b e e b e 19

Partition EVOIULION FEBIUIE..........cueeeeeeeceee ettt sne st e beseesaebeseeseenean 19

Partition transfOrmM fEALUIE..........cci i ettt e e esessesnestenes 20
Query metadata tahl €S FEBIUNE.........co.cirieiree bbb 21
ROIIDACK 1ADI€ FEALUE.......eeneeeeeeeee ettt st eesees e s sesresbesbeseeseenteneens 22
SElECt 1CEDEIG TalA FEBIUME.......c.eeeeieee bbbttt 22
SCheMa EVOIULION FEALUE...........oieeeeieece ettt sttt sttt se e e e e e e e e eseeseesessesteseesaeneensesenns 23
SChEMA INFEIENCE FEBIUNE.ot a et be e te b e seesa e et e e e e eneeneeneerennes 24
SNAPSNOL MBNAGJEIMIENL..... ettt sttt e bt e s b et et et b e st b e seeb e seebeseebeseebesbenesee st sbenenbeneas 25
LT (s V= I = (=SSP 25
TrUNCALE tADIE FEALUIE........e ettt s st ae s ae s be s be s eesbesbesee e enee e e e eneesennennens 25
UPAALE AAEA FEALUIE........ceieiitiietieet ettt bbbt bbbt bt b et e et 26

Best practices for 1ceberg in CDP.........ooie e 26
Migrating to V2 tables before row-1evel Changes..........ccov i enens 27

Perfor ManCe tUNING.....c.coiiiiie ettt eereenree s 27
Configuring manifest caching in Cloudera Manager ..ot 28

Unsupported features and [imitations.........ccceveveieeieenee e 28

Accessing | ceberg tables..........cociiiici 30
Opening RANGE!r iN Data HUD........cc.coieeececee ettt st se e e e e e e e e eneerennennens 31
Editing a policy t0 aCCESS ICEDEIG FIlES......iiuiieicicic e e e 32

Creating an lceberg table........ooov i 36

Creating an Iceberg partitioned table..........c.ccooeeeie e, 37
EXPIriNg SNAPSNOLS......ooeiiiieee e 38
Inserting data into a table..........ccoooveiei e 38
Migrating a Hive table to 1CEDEI g......cvovieiiiiiie e 38
Selecting an Iceberg table.........oo i 39
RUNNING tiME travel QUENTES........coiieeeie et 40
Updating an 1ceberg partition..........ccoeieiiie e 41
Test driving Iceberg from Impala........cccooeeiieiiiin s 41
HIVE MO AaL@.......cieiiiieiieeee e e e 43
Test driving 1ceberg from HIVe........oocv i 46
| CEDEN g aa LYPES.....ei et st sr et nnee s 47

| ceberg table ProPertiES.......oo e 48

Apache | ceberg features

Y ou can quickly build on your past experience with SQL to analyze |ceberg tables.

I ceberg features include security and governance, and other Cloudera Data Platform benefits, described in Apache
Iceberg in CDP.

Impala queries are table-format agnostic. For example, Impala options are supported in queries of 1ceberg tables from
Impala. Y ou can run nested, correlated, analytic queries on all supported table types.

Most Hive queries are table-format agnostic. This documentation does not attempt to show every possible query
supported from Hive and Impala. The following topics show many examples of how to run queries on Iceberg tables
from Hive and Impala.

In Hive or Impala, you can use ALTER TABLE to set table properties. From Impala, you can use ALTER TABLE
to rename atable, to change the table owner, or to change the role of the table owner. From Hive, you can alter the
metadata location of the table if the new metadata does not belong to another table; otherwise, an exception occurs.

Y ou can convert an Iceberg vl table to v2 by setting atable property as follows: format-version' = '2'.

ALTER TABLE t abl e _nane SET TBLPROPERTI ES t abl e _properti es;

« table properties

A list of properties and values using the following syntax:

("key' = 'value', '"key' = 'value', ...)

ALTER TABLE t abl e_name RENAME TO new_t abl e_nane;
ALTER TABLE t abl e nanme SET OMNER USER user _nane;

ALTER TABLE t abl e_name SET OMER ROLE rol e_nane;

ALTER TABLE test table SET TBLPROPERTI ES(' net adat a_| ocati on' =' s3a: // bucket Na
me/ i ce_t abl e/ net adat a/ v1. net adat a. j son');
ALTER TABLE test_tabl e2 SET TBLPROPERTI ES(' format-version' = '2');

ALTER TABLE t1 RENAME TO t 2;
ALTER TABLE ice_tablel set OMER USER john_doe;

ALTER TABLE ice_tabl e2 set OMER ROLE sone_rol e;
ALTER TABLE i ce 8 SET TBLPROPERTIES ('read.split.target-size' ="' 268435456');

https://docs.cloudera.com/cdp-public-cloud/cloud/cdp-iceberg/topics/iceberg-in-cdp.html
https://docs.cloudera.com/cdp-public-cloud/cloud/cdp-iceberg/topics/iceberg-in-cdp.html

Apache | ceberg features

ALTER TABLE ice_tabl e3 SET TBLPROPERTI ES(' format -version' = '2');

You use CREATE TABLE from Impalaor CREATE EXTERNAL TABLE from Hive to create an externa tablein
Iceberg. You learn the subtle differences in these features for creating Iceberg tables from Hive and Impala. Y ou aso
learn about partitioning.

Hive and Impala handle external table creation alittle differently, and that extends to creating tablesin Iceberg. By
default, Iceberg tables you create are v1. To create an Iceberg v2 table from Hive or Impala, you need to set atable
property as follows:'format-version' = '2'.

From Hive, CREATE EXTERNAL TABLE isrecommended to create an |ceberg tablein CDP.

When you use the EXTERNAL keyword to create the Iceberg table, by default only the schemais dropped when you
drop the table. The actual datais not purged. Conversely, if you do not use EXTERNAL, by default the schema and
actual datais purged. Y ou can override the default behavior. For more information, see the Drop table feature.

From Hive, you can create atable that reuses existing metadata by setting the metadata |ocation table property to
the object store path of the metadata. The operation skips generation of new metadata and re-registers the existing
metadata. Use the following syntax:

CREATE EXTERNAL TABLE ice_fmhive (i int) STORED BY | CEBERG TBLPROPERTI ES ('
nmet adat a_| ocati on' =' <obj ect store or file system path>')

See examples below.

From Impala, CREATE TABLE is recommended to create an | ceberg table in CDP. Impala creates the | ceberg table
metadata in the metastore and also initializes the actual |ceberg table datain the object store.

The difference between Hive and Impala with regard to creating an Iceberg table is related to Impala compatibility
with Kudu, HBase, and other tables. For more information, see the Apache documentation, "Using Impalawith
Iceberg Tables".

When you create an Iceberg table using CREATE EXTERNAL TABLE in Hive or using CREATE TABLE in
Impala, HiveCatalog creates an HM S table and also stores some metadata about the table on your object store, such
as S3. Creating an | ceberg table generates a metadata.json file, but not a snapshot. In the metadata.json, the snapshot-
id of anew tableis-1. Inserting, deleting, or updating table data generates a snapshot. The Iceberg metadata files and
datafiles are stored in the table directory under the warehouse folder. Any optional partition datais converted into

I ceberg partitions instead of creating partitions in the Hive Metastore, thereby removing the bottleneck.

To create an Iceberg table from Hive or from Impala, you associate the Iceberg storage handler with the table using
one of the following clauses, respectively:

* Hive: STORED BY ICEBERG
* Impala STORED ASICEBERG or STORED BY ICEBERG

Y ou can write |ceberg tables in the following formats:

e From Hive: Parquet (default), Avro, ORC
e From Impala Parquet

https://impala.apache.org/docs/build/html/topics/impala_iceberg.html
https://impala.apache.org/docs/build/html/topics/impala_iceberg.html

Apache | ceberg features

Impala supports writing lceberg tables in only Parquet format. Impala does not support defining both file format and
storage engine. For example, CREATE TABLE thl ... STORED AS PARQUET STORED BY ICEBERG works
from Hive, but not from Impala.

Y ou can read | ceberg tables in the following formats:

e From Hive: Parquet, Avro, ORC
* From Impala Parquet, Avro, ORC

Note: Reading Iceberg tablesin Avro format from Impalais available as atechnical preview. Cloudera
Ij recommends that you use this feature in test and development environments. It is not recommended for
production deployments.

CREATE [EXTERNAL] TABLE [IF NOT EXI STS] [db_nane.]tabl e_nane
[(col _name data_type, ...
[PARTI TI ONED BY [SPEC] ([col _nane] [, spec(value)][, spec(value)]...)]]
[STORED AS file_format]
STORED BY | CEBERG
[TBLPROPERTI ES (' key' =" val ue', 'key'='value', ...)]

CREATE TABLE [I F NOT EXI STS] [db_nane.]tabl e _nane
[(col _nanme data_type, ...)]
[PARTI TI ONED BY [SPEC] ([col _nane] [, spec(value)][, spec(value)]...)]]
STORED {AS | BY} | CEBERG
[TBLPROPERTI ES (property_nane=property_value, ...)]

CREATE EXTERNAL TABLE ice_1 (i INT, t TIMESTAMP, j BI G NT) STORED BY | CEBERG

CREATE EXTERNAL TABLE ice_2 (i INT, t TIMESTAMP) PARTI TI ONED BY (j BI G NT)
STORED BY | CEBERG

CREATE EXTERNAL TABLE ice 4 (i int) STORED AS ORC STORED BY | CEBERG

CREATE EXTERNAL TABLE ice_5 (i int) STORED BY | CEBERG TBLPROPERTI ES (' net ad
ata | ocation' = s3a://bucket Nane/i ce_t abl e/ net adat a/ vl. net adat a. j son')
CREATE EXTERNAL TABLE ice_6 (i int) STORED AS ORC STORED BY | CEBERG TBLPRO
PERTIES ('format-version' = '2'");

CREATE TABLE ice_7 (i INT, t TIMESTAMP, j BI G NT) STORED BY | CEBERG, //creat

es only the schema

CREATE TABLE ice_8 (i INT, t TIMESTAMP) PARTI TI ONED BY (j BIG NT) STORED BY
| CEBERG //creates schema and initializes data

CREATE TABLE ice v2 (i INT, t TIMESTAMP) PARTI TIONED BY (j BI G NT) STORED BY
| CEBERG TBLPROPERTI ES (' format-version' = '2"); //creates a v2 table

Y ou can create an | ceberg table based on an existing Hive or Impalatable.
The create table as select (CTAS) query can optionally include a partitioning spec for the table being created.

Apache | ceberg features

CREATE EXTERNAL TABLE ctas STORED BY | CEBERG AS SELECT i, t, j FROMice_1;

CREATE TABLE ctas STORED BY | CEBERG AS SELECT i, b FROMice_11;

You learn by example how to create an empty table based on another table.

From Hive or Impala, you can create an | ceberg table schema based on another table. The table contains no data. The
table properties of the original table are carried over to the new table definition. The following examples show how to
use this feature:

CREATE EXTERNAL TABLE target LIKE source STORED BY | CEBERG

CREATE TABLE target LIKE source STORED BY | CEBERG

Y ou can create a partitioned | ceberg table by selecting another table. Y ou see an example of how to use
PARTITIONED BY and TBLPROPERTIES to declare the partition spec and table properties for the new table.

Y ou see an example of using a partition transform with the PARTITIONED BY SPEC clause.

The newly created table does not inherit the partition spec and table properties from the source tablein SELECT.
The Iceberg table and the corresponding Hive table is created at the beginning of the query execution. The datais
inserted / committed when the query finishes. So for atransient period the table exists but contains no data.

CREATE [EXTERNAL] TABLE prod. db. sanpl e
USI NG i ceberg
PARTI TI ONED BY (part)
TBLPROPERTI ES (' key' =" val ue')
AS SELECT ...

CREATE EXTERNAL TABLE ctas STORED BY | CEBERG AS SELECT i, t, j FROMice_1;

CREATE EXTERNAL TABLE ctas_part PARTI TI ONED BY(z) STORED BY | CEBERG TBLPROPE
RTIES (' format-version' =" 2")

AS SELECT x, ts, z FROM t;

CREATE EXTERNAL TABLE ctas_part_spec PARTI TI ONED BY SPEC (nonth(d)) STORED
BY | CEBERG TBLPROPERTI ES (' fornmat-version' = 2")

AS SELECT x, ts, d FROM source_t;

https://docs.cloudera.com/runtime/7.2.17/iceberg-how-to/topics/iceberg-partition-transformation.html

Apache | ceberg features

CREATE TABLE ctas STORED BY | CEBERG AS SELECT i, b FROMice_11;

CREATE TABLE ctas_part PARTI TI ONED BY(b) STORED BY | CEBERG AS SELECT i, s, b
FROM i ce_11;

CREATE TABLE ctas_part _spec PARTI TI ONED BY SPEC (nmonth(d)) STORED BY | CEBERG
TBLPROPERTI ES (' format-version' ='2")

AS SELECT x, ts, d FROM source_t;

You can delete datain aV2 Iceberg table.

Hive and Impala delete | ceberg V 2 table data using position delete files, one type of formatting defined by the Iceberg
Spec. Cloudera supports Row-level deletes. Position delete files contain the following information:

 file_path, whichisafull URI
* pos, thefile position of the row

Delete files are sorted by file_path and pos. The following table shows an example of delete filesin a partitioned
table:

YEAR(ts)=2022 ts year=2022/data-abcd. parquet ts year=2022/del ete-wxyz.parquet
ts_year=2022/data-bcde.parquet

YEAR(ts)=2023 ts_year=2023/data-efgh.parquet ts_year=2023/del ete-hxkw.parquet
MONTH(ts)=2023-06 ts_month=2023-06/data-ijk|.parquet ts_month=2023-06/del ete-uzwd.parquet
MONTH(ts)=2023-07 ts_month=2023-07/data-mnop.parquet ts_month=2023-07/del ete-udgx.parquet

If you have a problem with deletes in the following situations, an equality deletefile in the table is the likely cause:

* In Change Data Capture (CDC) applications
* Inupsertsfrom Apache Flink
e From athird-party engine

Inserting, deleting, or updating table data generates a snapshot.
You use aWHERE clause in your DELETE statement. For example:

delete fromthl ice where a <= 2, 1;

Hive and Impala eval uate rows from one table against a WHERE clause, and delete all the rows that match WHERE
conditions. If you want delete all rows, use the Truncate feature. The WHERE expression is similar to the WHERE
expression used in SELECT. The conditions in the WHERE clause can refer to any columns.

Concurrent operations that include DELETE do not introduce inconsistent table states. |ceberg runs validation
checksto check for concurrent modifications, such as DELETE+INSERT. Only one will succeed. On the other hand,
DELETE+DELETE, and INSERT+INSERT can both succeed, but in the case of a concurrent DELETE+UPDATE,
UPDATE+UPDATE, DELETE+INSERT, UPDATE+INSERT from Hive, only the first operation will succeed.

From joined tables, you can delete all matching rows from one of the tables. Y ou can join tables of any kind, but
the table from which the rows are deleted must be an Iceberg table. The FROM keyword is required in this case, to
separate the name of the table whose rows are being deleted from the table names of the join clauses.

https://iceberg.apache.org/spec/#delete-formats
https://iceberg.apache.org/spec/#row-level-deletes
https://iceberg.apache.org/spec/#row-level-deletes
https://iceberg.apache.org/spec/#row-level-deletes

Apache | ceberg features

Hive or Impala syntax

del ete fromtabl ename [where expression]

del ete joined_tabl enanme from|[joi ned_tabl enane, joined_ tablename2, ...] [wh

ere expression |

Hive or Impala examples

create table tbl _ice(aint, b s

insert into tbl _ice values (1, 'one', 50), (2, '"tw', 51), (3, 'three', 52),
(4, 'four', 53), (5, 'five', 54), (111, 'one', 55), (333, 'two', 56);

delete fromthl ice where a <= 2, 1;

The following example deletes 0, 1, or more rows of the table. If collisaprimary key, O or 1 rows are deleted:

delete fromice_table where coll =

100;

For more information, including examples, see Using Impala with Iceberg Tables.

Describe table metadata feature

Y ou can use certain Hive and Impala show and describe commands to get information about table metadata. Y ou can

also query metadata tables.

The following table lists SHOW and DESCRIBE commands supported by Hive and Impala.

Command Syntax

Description

SQL Engine Support

SHOW CREATE TABLE table_name Revedl s the schema that created the table. Hive and Impala
SHOW FILESIN table_name Liststhefilesrelated to the table. Impala
SHOW PARTITIONS table_name Returns the | ceberg partition spec, just the Impaa

column information, not actual partitions or
files.

DESCRIBE [EXTENDED] table_name

The optional EXTENDED shows al the
metadata for the table in Thrift serialized form,
which is useful for debugging.

Hive and Impala

WEEN timestampl AND timestamp2]

DESCRIBE [FORMATTED] table_name The optional FORMATTED shows the Hive
- metadata in tabular format.
DESCRIBE HISTORY table_name [BET Optionally limits the output history to aperiod | Impala

of time.

Hive example

DESCRI BE t;

Hive output includes the following information:

col_name data_type

X

int

comment

y

int

NULL

NULL

Partition Transform Information

NULL

NULL

10

https://impala.apache.org/docs/build/html/topics/impala_iceberg.html

Apache | ceberg features

col_name transform_type NULL

y IDENTITY NULL

The output of DESCRIBE HISTORY includes the following columns about the snapshot. The first three are self-
explanatory. Theis_current_ancestor column value is TRUE if the snapshot is the ancestor of the table:

e creation_time

e snapshot_id

e parent_id

e is_current_ancestor

DESCRI BE HI STORY ice_t FROM'2022-01-04 10:00:00';

DESCRI BE HI STORY ice t FROM now() - interval 5 days;

DESCRI BE HI STORY ice_t BETWEEN '2022-01-04 10: 00: 00" AND ' 2022-01-05 10:00:0
0';

The syntax you use to create the table determines the default behavior when you drop the | ceberg table from Hive or
Impala

If you use CREATE TABLE, the external .table.purge flag is set to true. When the table is dropped, the contents

of the table directory (actual data) are removed. If you use CREATE EXTERNAL TABLE from Hive, the

external .table.purge flag is set to false. Dropping atable purges the schema only. The actual datais not removed. You
can explicitly set the external .table.purge property to true to drop the data as well as the schema.

To prevent data loss during migration of atable to Iceberg, do not drop or move the table during migration.
Exception: If you set the table property ‘external .table.purge’="FAL SE', no data loss occurs if you drop the table.

DROP TABLE [I F EXI STS] tabl e nane

ALTER TABLE t SET TBLPROPERTI ES(' ext ernal . tabl e. purge' = true');
DROP TABLE t;

Y ou can expire snapshots that | ceberg generates when you create or modify atable. During the lifetime of atable the
number of snapshots of the table accumulate. Y ou learn how to remove snapshots you no longer need.

Y ou should periodically expire snapshots to delete data files that are no longer needed, and to reduce the size of
table metadata. Each write to an | ceberg table from Hive creates a new snapshot, or version, of atable. Snapshots
can be used for time-travel queries, or for rollbacks. The table can be rolled back to any valid snapshot. Snapshots
accumulate until they are expired by the expire_snapshots operation.

Y ou use the following syntax to expire snapshots older than a timestamp or timestamp expression:

11

Apache | ceberg features

ALTER TABLE ... EXECUTE expire_snapshot s(<ti nestanp expressi on>)

The first example removes snapshots having a timestamp older than August 15, 2022 1:50 pm. The second example
removes snapshots from 10 days ago and before.

ALTER TABLE ice_11 EXECUTE expi re_snapshot s(' 2022-08-15 13: 50: 00");
ALTER TABLE ice_t EXECUTE expire_snapshots(now() - interval 10 days);

Y ou can prevent expiration of recent snapshots by configuring the history.expire.min-snapshots-to-keep table
property. Y ou can use the alter table feature to set a property.

The contents of the table directory (actua data) might, or might not, be removed when you drop the table. An orphan
data file can remain when you drop an Iceberg table, depending on the external .table.purge flag table property. An
orphaned datafile is one that has contents in the table directory, but no snapshot.

Expiring a snapshot does not remove old metadata files by default. Y ou must clean up metadata files using writ
e.metadata.del ete-after-commit.enabled=true and write.metadata.previous-versions-max table properties. For more
information, see "lceberg table properties’ below. Setting this property controls automatic metadata file removal after
metadata operations, such as expiring snapshots or inserting data.

From Hive and Impala, you can insert datainto Iceberg tables using the standard INSERT INTO asingletable.
INSERT statements work for V1 and V2 tables.

Y ou can replace datain the table with the result of a query. To replace data, Hive and Impala dynamically overwrite
partitions that have rows returned by the SELECT query. Partitions that do not have rows returned by the SELECT
query, are not replaced. Using INSERT OVERWRITE on tables that use the BUCKET partition transform is not
recommended. Results are unpredictable because dynamic overwrite behavior would be too random in this case.

From Hive, CDP also supports inserting into multiple tables as a technical preview; however, this operation is not
atomic, so data consistency of Iceberg tablesis equivaent to that of Hive external tables. Changes within asingle
table will remain atomic.

Inserting, deleting, or updating table data generates a snapshot. A new snapshot corresponds to a new manifest list.
Manifest lists are named snap-*.avro.

I ceberg specification defines sort orders. At this point, Hive doesn’t support defining sort orders. But if there are sort
orders defined by using other engines Hive can utilize them on write operations. For more information about sorting,
see sort orders specification.

I NSERT | NTO TABLE t abl enane VALUES val ues row [, values row ...]
I NSERT | NTO TABLE t abl enanel sel ect _statenentl FROM t abl enane2

| NSERT OVERWRI TE TABLE t abl enanel sel ect _statenent1l FROM t abl enane2

12

https://iceberg.apache.org/spec/#sort-orders

Apache | ceberg features

CREATE TABLE ice_10 (i INT, s STRING b BOOLEAN) STORED BY | CEBERG
I NSERT | NTO i ce_10 VALUES (1, 'asf', true);

CREATE TABLE ice_11 (i INT, s STRING b BOOLEAN) STORED BY | CEBERG
I NSERT I NTO ice 11 VALUES (2, 'apache', false);

I NSERT INTO i ce_11 SELECT * FROM i ce_10;

SELECT * FROMice_11;

| NSERT OVERWRI TE ice_11 SELECT * FROM ice_10;

FROM cust oner s
I NSERT | NTO targetl SELECT customer _id, first_nane;
I NSERT | NTO target2 SELECT | ast_nane, customer _id;

From Impala, you can load Parquet or ORC data from afilein adirectory on your file system or object store into an
| ceberg table. Y ou might need to set the mem_limit or pool configuration (max-query-mem-limit, min-query-mem-
limit) to accommodate the load.

LOAD DATA I NPATH ‘<path to file> INTO table t;

In this example, you create atable using the LIKE clause to point to atable stored as Parquet. Thisis required for
Iceberg to infer the schema. Y ou also load data stored as ORC.

CREATE TABLE test _iceberg LIKE my_parquet table STORED AS | CEBERG

SET MEM LI M T=1MB;

LOAD DATA | NPATH 's3a://testbucket/files/ny_data.parq |NTO TABLE test ice
ber g;

LOAD DATA | NPATH 's3a://testbucket/files/my_data.orc' | NTO TABLE test2 ic
eber g;

Thereis no difference in the way you insert datainto a partitioned or unpartitioned | ceberg table.
Working with partitionsis easy because you write the query in the same way for the following operations:

* Insert into, or replace, an unpartitioned table
e |nsertinto, or replace, an identity partitioned table
« Insertinto, or replace, atransform-partitioned table

Do not use INSERT OVERWRITE on tables that went through partition evolution. Truncate such tablesfirst, and
then INSERT the tables.

13

Apache | ceberg features

CREATE TABLE ice_12 (i int, s string, t tinestanp, t2 tinmestanp) STORED BY |
CEBERG

I NSERT | NTO i ce_12 VALUES (42, 'inpala', now(), to_date(now()));
| NSERT OVERWRI TE ice_t VALUES (42, 'inpala', now(), to_date(now()));

Using a materialized view can accelerate query execution. Creating a materialized view on top of Iceberg tablesin
CDP can further accel erate the performance. Y ou can create a materialized view of an Iceberg V1 or V2 table based
on an existing Hive or Iceberg table.

The materialized view is stored in Hive ACID or Iceberg format. Materialized view source tables either must be
native ACID tables or must support table snapshots. Automatic rewriting of a materialized view occurs under the
following conditions:

* Theview definition contains the following operators only:

e TableScan
e Project
e Filter
e Join(inner)
e Aggregate
» Sourcetables are native ACID or |ceberg v1 or v2
» Theview isnot based on time travel queries because those views do not have up-to-date data by definition.

The following example creates a materialized view of an | ceberg table from Hive.

drop table if exists tbl_ice;
create external table tbl _ice(a int, b string, ¢ int) stored by iceberg st
ored as orc thlproperties ('format-version' ='2");

create materialized view matl as
select b, ¢ fromtbl ice for systemversion as of 5422037307753150798;

The following example creates a materialized view of two | ceberg tables. Joined tables must be in the same table
format, either Iceberg or Hive ACID.

drop table if exists thl_ice2;

create table tbhl _ice2(a int, b string, c int) stored as orc TBLPROPERTIES ('
transactional'="true');

I NSERT I NTO thbl _ice2 VALUES (2, 'apache', 3);

drop table if exists tbl_ice;

create external table tbl _ice(a int, b string, c¢c int) stored by iceberg sto
red as orc tblproperties ('format-version' = 2");

I NSERT | NTO tbl _acid VALUES (4, 'iceberg', 5);

create materialized view mat1l as

select tbl _ice2.b, tbl ice2.c fromtbl _ice join tbl _ice2 on thl _ice.a =tb
| ice2. a;

14

Apache | ceberg features

The following example uses explain to examine a materialized view and then creates a materialized view of an
Iceberg V1 table from Hive.

drop materialized viewif exists matl;
drop table if exists tbl_ice;

create table tbl _ice(a int, b string, c int) stored by iceberg stored as orc
t bl properties (' format-version' ="1");

insert into tbl _ice values (1, 'one', 50), (2, "tw', 51), (3, 'three', 52),
(4, 'four', 53), (5, 'five', 54);

explain create materialized view matl stored by iceberg stored as orc tblpr

operties ('format-version' ='1') as

select thl _ice.b, tbl ice.c fromthl _ice where tbhl _ice.c > 52;

create materialized view mat1l stored by iceberg stored as orc tbl properties
('format-version'='1") as
select tbl _ice.b, tbl _ice.c fromtbl _ice where tbl _ice.c > 52;

Updates to materialized view contents when new datais added to the underlying table are critical; otherwise, queries
can return stale data.

An update can occur under the following conditions:
» Asarow-level incremental rebuild of the view after inserting datainto atable

Source tables can be Iceberg V2 or Hive full ACID.
* Asafull rebuild of the view

A full rebuild can be expensive. An incremental rebuild updates only the affected parts of the materialized view,
decreasing rebuild step execution time.

Anincremental rebuild occurs automatically when you insert (append) datainto a source table; otherwise, after you
make some other type of change, for example a delete, you must manually start a full rebuild.

Y ou use the ALTER command to manually start afull rebuild of the materialized view from Hive as follows:

ALTER MATERI ALI ZED VI EW <nane of vi ew> REBUI LD,

In this example, first you set required properties. Next, you create |ceberg tables, aV1 table and a V2 table, from
Hive. You insert datainto the tables and create a materialized view of the joined tables. Y ou insert some new values
into one of the source tables, rendering the materialized view stale. Finally, you rebuild the materialized view using
explain cho to show the rebuild plan The rebuild plan indicates a full rebuild will occur, which means the definition
query will be executed.

drop table if exists tbl _ice;

drop table if exists thl _ice_v2;

create external table tbl _ice(a int, b string, ¢ int) stored by iceberg sto
red as orc tblproperties ('format-version' = 1');

create external table thl _ice v2(d int, e string, f int) stored by iceberg

stored as orc tblproperties ('format-version' = 2");

insert into tbl _ice v2 values (1, 'one v2', 50), (4, 'four v2', 53), (5, 'f
ive v2', 54);

15

Apache | ceberg features

create materialized view mat1l as

select thl _ice.b, tbl _ice.c, thl _ice v2.e fromthl _ice

join tbl ice v2 on thl _ice.a=tbl _ice v2.d where tbl _ice.c > 52;
group by thl ice.b tbl _ice.c;

-- view should be enpty
select * from mat 1;

-- viewis up-to-date, use it

expl ain cbo

select tbl _ice.b, tbl _ice.c, tbl _ice v2.e fromtbl _ice join thl _ice_v2 on
tbl ice.a=tbl _ice v2.d where thl ice.c > 52;

-- insert sone new values to one of the source tables
insert into tbl _ice values (1, 'one', 50), (2, '"tw', 51), (3, 'three', 52),
(4, 'four', 53), (5, 'five', 54);

-- view is outdated, cannot be used

expl ain cbho

select tbl _ice.b, tbl_ice.c, tbl_ice_v2.e fromtbl_ice join thl _ice_v2 on tb
| ice.a=tbl _ice v2.d where tbl _ice.c > 52;

expl ain cbo
alter materialized view matl rebuil d

-- view should contain data
sel ect * from mat 1;

-- viewis up-to-date again, use it

expl ain cbo

select tbl _ice.b, thl _ice.c, tbl _ice v2.e fromtbl _ice join tbl _ice v2 on tb
| ice.a=tbl _ice v2.d where tbl _ice.c > 52;

group by tbhl ice.b tbl _ice.c;

In this example, you create an Iceberg table, insert some values, and create the materialized view. The view is
partitioned using a partition specification and stored in the I ceberg ORC format. The v1 format version is specified
in this example (the v2 format is also supported). Y ou then look at a description of the view and see that the query
rewrite option is enabled by default. An automatic incremental rebuild is possible when this option is enabled.

drop table if exists tbl_ice;
create external table tbl _ice(a int, b string, ¢ int) stored by iceberg
stored as orc tblproperties ('format-version'=1");

-- insert sonme new val ues into one of the source tables

insert into tbl _ice values (1, 'one', 50), (2, '"tw', 51), (3, 'three', 5
2), (4, '"four', 53), (5, 'five', 54);

expl ain

create materialized view mat1l partitioned on spec (bucket (16, b), trunc
ate(3, c)) stored by lceberg stored as orc tblproperties(‘'format-version’ =1
')as

select thl ice.b, thl)ice.c fromthbl _ice where tbl _ice.c > 52;

-- the output query plan query indicates a rewite is enabl ed

POSTHOOK: query: explain
create materialized view matl ..

16

Apache | ceberg features

STAGE PLANS

——”I.n stage one, the materialized viewis created by calling the Iceberg

APl to create the table object.
rewite enabl ed

Y ou use the DESCRIBE command to see the output query plan, which shows details about the view, including if it

can be used in automatic query rewrites.

-- check the materialized view details
descri be formatted mat 1;

#col _name data_type conment
b string
c i nt

#Partition Transform | nformati on

#col _name transformtype
b bucket (16)
c TRUNCATE] 3]

#detail ed tabl e i nformati on

Tabl e_t ype: MATERI ALI ZED VI EW
Tabl e Par anet er s:

current-snapshot-id 563939E424367334713

ﬁ.ét adata_| ocati on
"I:ébl e_type | ceberg

#Materi ali zed View | nformation
Oiginal Qery: ..
Expanded Query: ...
Rewite Enabl ed: Ye

With the query rewrite option enabled, you insert data into the source table, and incremental rebuild occurs

automatically. Y ou do not need to rebuild the view manually before running queries.

Y ou can perform actions on an | ceberg table based on the results of ajoin with av2 |ceberg table.

MERCE | NTO <target table> AS T USI NG <source expression/table> AS S

ON <bool ean expressi onl>

WHEN MATCHED [AND <bool ean expressi on2>] THEN UPDATE SET <set cl ause |ist>

VWHEN MATCHED [AND <bool ean expressi on3>] THEN DELETE

VWHEN NOT MATCHED [AND <bool ean expressi on4>] THEN | NSERT VALUES <val ue |i st>

Usethe MERGE INTO statement to update an | ceberg table based on a staging table:

MERGE | NTO cust oner USI NG (SELECT * FROM new_cust oner _stage) sub ON sub.id =

custoner.id

17

Apache | ceberg features

WHEN MATCHED THEN UPDATE SET nane = sub. nane, state = sub.new state
WHEN NOT MATCHED THEN | NSERT VALUES (sub.id, sub.name, sub.state);

Create an | ceberg table and merge it with a non-Iceberg table.

create external table target ice(a int, b string, ¢ int) partitioned by spec
(bucket (16, a), truncate(3, b)) stored by iceberg stored as orc tblproperti
es ('format-version' ='2");

create table source(a int, b string, c int);

Src.a

merge into target _ice as t using source src ONt.a
when matched and t.a > 100 THEN DELETE

when matched then update set b = "Merged', ¢ =t.c + 10
when not matched then insert values (src.a, src.b, src.c);

CDP supports table migration from Hive tablesto | ceberg tablesusing ALTER TABLE to set the table properties.
Y ou set the storage_handler table property to the Iceberg storage handler.

Impala does not support table migration in this release. The topic "Test driving Iceberg from Impala’ shows how to
create | ceberg tables from Impalatables.

the old and new tables. Exception: If you set the table property 'external.table.purge’="FAL SE', no dataloss
occurs when you drop the table.

E Note: Do not drop or move the old table during a migration operation. Doing so will delete the data files of

In-place table migration saves time generating | ceberg tables. Thereis no need to regenerate data files. Only
metadata, which points to source datafiles, is regenerated, as shown in the following diagram:

Hive Warehouse Directory Hive Warehouse Directory

f 1
\ |
\ |
\ I
| y |
\ |
\ I
\ |
\ |
\ —
| manifest |
L J
point to Hive table data 4—J

ALTER TABLE t abl e_nane SET TBLPROPERTI ES
(' storage_handl er' =" org. apache. i ceberg. nr. hi ve. H vel ceber gSt or ageHandl er') ;

From Hive, you can change the table metadata location, aso known as the snapshot location.

18

https://docs.cloudera.com/cdw-runtime/cloud/iceberg-how-to/topics/iceberg-table-migration.html

Apache | ceberg features

» The new location must contain exactly the same metadata json file as the old location.
« Before changing the metadata | ocation, you must migrate the table to Iceberg.

After migrating atable to Iceberg, you can change the metadata location using ALTER TABLE as shown below:

ALTER TABLE t set TBLPROPERTIES (' netadata_ | ocation' =" <pat h>/ hi venet adat a/ 00
003- alada2b8-f c86- 4b5b- 8c91- 400b6b46d0Of 2. net adat a. j son') ;

| ceberg partition evolution, which is a unique Iceberg feature, and the partition transform feature, greatly simplify
partitioning tables and changing partitions.

Partitions based on transforms are stored in the | ceberg metadata layer, not in the directory structure. Y ou can change
the partitioning completely, or just refine existing partitioning, and write new data based on the new partition layout--
no need to rewrite existing data files. For example, change a partition by month to a partition by day.

Use partition transforms, such as IDENTITY, TRUNCATE, BUCKET, YEAR, MONTH, DAY, HOUR. Iceberg
solves scalability problems caused by having too many partitions. Partitioning can also include columns with alarge
number of distinct values. Partitioning is hidden in the Iceberg metadata layer, eliminating the need to explicitly write
partition columns (Y EAR, MONTH for example) or to add extra predicates to queries for partition pruning.

SELECT * FROM tbl WHERE ts = ‘ 2023-04-21 20: 56: 08’
AND YEAR = 2023 AND MONTH = 4 AND DAY = 21

Y ear, month, and day can be automatically extracted from *2023-04-21 20:56:08' if the table is partitioned by
DAY (ts)

Partition evolution means you can change the partition layout of the table without rewriting existing datafiles. Old
data files can remain partitioned by the old partition layout, while newly added data files are partitioned based on the
new layout.

You can usethe ALTER TABLE SET PARTITION SPEC statement to change the partition layout of an Iceberg
table. A change to the partition spec results in a new metadata.json and a commit, but does not create a new snapshot.

ALTER TABLE t abl e name SET PARTI TI ON SPEC ([col _nane] [, spec(value)][, spec(
value)]...)]

. S)ec
The specification for atransform listed in the next topic, "Partition transform feature”.

ALTER TABLE t

SET PARTI TI ON SPEC (TRUNCATE(5, |evel), HOUR(event_tine),

BUCKET(15, nessage), price);

ALTER TABLE ice_p

SET PARTI TION SPEC (VA D(i), VO D(d), TRUNCATE(3, s), HOUR(t), i);

19

Apache | ceberg features

From Hive or Impala, you can use one or more partition transforms to partition your data. Each transform is applied
to a single column. Identity-transform means no transformation; the column values are used for partitioning. The
other transforms apply a function to the column values and the datais partitioned by the transformed values.

Using CREATE TABLE ... PARTITIONED BY you create identity-partitioned |ceberg tables. |dentity-partitioned

| ceberg tables are similar to the Hive or Impala partitioned tables, which are stored in the same directory structure
asthe datafiles. Iceberg stores the partitioning columns of identity-partitioned | ceberg tablesin a different directory
structure from the data files if the tables are migrated to | ceberg from Hive external tables. Iceberg handles the tables
and files regardless of the location.

Hive and Impala support | ceberg advanced partitioning through the PARTITION BY SPEC clause. Using this clause,
you can define the |ceberg partition fields and partition transforms.

The following table lists the available transformations of partitions and corresponding transform spec.

Partition by year years(time_stamp) | year(time_stamp) Hive and Impala
Partition by month months(time_stamp) | month(time_stamp) Hive and Impala
Partition by a date value stored asint (dateint) | days(time_stamp) | date(time_stamp) Hive
Partition by hours hours(time_stamp) Hive
Partition by a dateint in hours date_hour(time_stamp) Hive
Partition by hashed value mod N buckets bucket(N, col) Hive and Impala
Partition by value truncated to L, whichisa truncate(L, col) Hive and Impala

number of characters

Strings are truncated to length L. Integers and longs are truncated to bins. For example, truncate(10, i) yields
partitions 0, 10, 20, 30 ...

The idea behind transformation partition by hashed value mod N buckets is the same as hash bucketing for Hive
tables. A hashing agorithm calculates the bucketed column value (modulus). For example, for 10 buckets, datais
stored in column value % 10, ranging from 0-9 (O to n-1) buckets.

You use the PARTITIONED BY SPEC clause to partition atable by an identity transform.

CREATE [EXTERNAL] TABLE [IF NOT EXI STS] [db_nane.]tabl e_nane
[(col _name data_type][, time_stanp TI MESTAMP])]
[PARTI TI ONED BY SPEC([col _nane] [, spec(value)][, spec(value)]...)]
[STORED AS file_format]
STORED BY | CEBERG
[TBLPROPERTI ES (property_nane=property value, ...)]

Where spec(value)represents one or more of the following transforms:

e YEARS(col_name)

* MONTHS(col_name)

* DAY S(col_name)

e BUCKET(bucket_num,col_name)
« TRUNCATE(length, col_name)

CREATE TABLE [I F NOT EXI STS] [db_nane.]tabl e_nane
[(col _nane data_type, ...

[PARTI TI ONED BY SPEC([col _|)'1!31rre] [, spec(value)][, spec(value)]...)]

20

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL+BucketedTables
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL+BucketedTables

Apache | ceberg features

STORED (AS | BY) | CEBERG
[TBLPROPERTI ES (property_nane=property_value, ...)]

Where spec(value) represents one or more of the following transforms:

* YEARS(col_name)

e MONTHS(col_name)

* DAYS(col_name)

e BUCKET(bucket_num,col_name)
* TRUNCATE(Iength, col_name)

The following example creates atop level partition based on column i, a second level partition based on the hour part
of the timestamp, and athird level partition based on the first 1000 charactersin column j.

CREATE EXTERNAL TABLE ice 3 (i INT, t TIMESTAMP, j BIG NT) PARTI TI ONED BY SP
EC (i, HOUR(t), TRUNCATE(1000, j)) STORED BY | CEBERG

CREATE TABLE ice 13 (i INT, t TIMESTAMP, j BI G NT) PARTI TI ONED BY SPEC (i, H
OUR(t), TRUNCATE(1000, j)) STORED BY | CEBERG

The following examples show how to use the PARTITION BY SPEC clausein a CREATE TABLE query from
Impala.The same transforms are availablein a CREATE EXTERNAL TABLE query from Hive.

CREATE TABLE ice_t(id INT, name STRING dept STRI NG
PARTI TI ONED BY SPEC (bucket (19, id), dept)

STORED BY | CEBERG

TBLPROPERTI ES (' format-version' =" 2");

CREATE TABLE ice_ctas

PARTI TI ONED BY SPEC (truncate(1000, id))

STORED BY | CEBERG

TBLPROPERTI ES (' format-version' = 2")

AS SELECT id, int_col, string_col FROM source_table;

From Hive, you can query |ceberg metadata tables as you would query a Hive table. For example, you can use
projections, joins, filters, and so on.

Y ou can also use the describe table metadata feature to get information about metadata. The following | ceberg
metadata tables are available from Hive:

» files

e entries

e snapshots
e manifests
e partitions

21

Apache | ceberg features

To reference a metadata table, use the full name of the table as shown in the following syntax:

<DATABASE_NAME>. <TABLE_NAME>. <METADATA TABLE_NAME>

SELECT * FROM default.table a.files;

In the event of a problem with your table, you can reset atable to a good state as long as the snapshot of the good
tableisavailable. You can roll back the table data based on a snapshot id or a timestamp.

When you modify an Iceberg table, a new snapshot of the earlier version of the table is created. When you roll back a
table to a snapshot, a new snapshot is created. The creation date of the new snapshot is based on the Timezone of your
session. The snapshot id does not change.

ALTER TABLE test _tabl e EXECUTE rol | back(snapshot|D);
ALTER TABLE test table EXECUTE rol | back('timestanp');

The following example rolls back to an earlier table, creating a new snapshot having a new creation date timestamp,
but keeping the same snapshot id 3088747670581784990.

ALTER TABLE ice_t EXECUTE ROLLBACK(3088747670581784990) ;

The following example rolls the table back to the latest snapshot having a creation timestamp earlier than '2022-08-08
00:00:00'.

ALTER TABLE ice_7 EXECUTE ROLLBACK('2022-08-08 00: 00: 00')

Y ou can read | ceberg tables from Impala as you would any table. Joins, aggregations, and analytical queries, for
example, are supported.

Impala supports reading V2 tables with position deletes.

SELECT * FROM ice_t;

SELECT count (*) FROMice_t i LEFT OQUTER JO N other_t b
ON (i.id = other_t.fid)
VWHERE i.col = 42;

22

https://iceberg.apache.org/spec/#row-level-deletes

Apache | ceberg features

Y ou learn that the Hive or Impal a schema changes when the associated |ceberg table changes. Y ou see examples of
changing the schema.

Although you can change the schema of your table over time, you can still read old data files because | ceberg
uniquely identifies schema elements. A schema change results in a new metadata.json and a commit, but does not
create a new snapshot.

The Iceberg table schema s synchronized with the Hive/lmpala table schema. A change to the schema of the I ceberg
table by an outside entity, such as Spark, changes the corresponding Hive/lmpalatable. Y ou can change the Iceberg
table using ALTER TABLE to make the following changes:

From Hive:

e Addacolumn
* Replace acolumn
« Change acolumn type or its position in the table

From Impala:

e Addacolumn

* Renameacolumn

e Dropacolumn

» Change acolumn type

An unsafe change to a column type, which would require updating each row of the table for example, is not allowed.
The following type changes are safe:

e inttolong
» float to double
e decima(P, S) todecimal (P, S) if precision isincreased

Y ou can drop a column by changing the old column to the new column.

ALTER TABLE t abl e_name ADD COLUWNS (col _name type[, .])
ALTER TABLE t abl e nanme CHANGE COLUWN col ol d_nane col new nane type

ALTER TABLE t abl e_name CHANGE COLUWN col _ol d_nane col _new nane type [Fl RST|
AFTER col _name] [existing_col_nane

]
ALTER TABLE t abl e_name REPLACE COLUWNS (col name type)

ALTER TABLE t abl e_name ADD COLUWNS(col name type[, .])

ALTER TABLE t abl e _name CHANGE COLUWN col ol d_nane col new nane type
ALTER TABLE t abl e _name DROP COLUMN col name

ALTER TABLE t ADD COLUWNS(nessage STRING price DECIMAL(8,1));

ALTER TABLE t REPLACE COLUWNS (i int comrent ‘...’ , a string, ...)
ALTER TABLE t CHANGE COLUWN col _x col _x DECI MAL (22, 3) AFTER col _

23

Apache | ceberg features

ALTER TABLE ice_12 ADD COLUWNS(nessage STRING price DECI MAL(8, 1));
ALTER TABLE ice_12 DROP COLUW i ;

ALTER TABLE ice_12 CHANGE COLUW s str STRI NG

From Hive or Impala, you can base a new |ceberg table on a schemain a Parquet file. Y ou see a differencein the
Hive and Impala syntax and examples.

From Hive, you must use FILE in the CREATE TABLE LIKE ... statement. From Impala, you must omit FILE in the
CREATE TABLE LIKE ... statement. The column definitions in the Iceberg table are inferred from the Parquet data
file when you create atable like Parquet from Hive or Impala. Set the following table property for creating the table:

hi ve. parquet.infer.binary.as = <val ue>

Where <value> is binary (the default) or string.

This property determines the interpretation of the unannotated Parquet binary type. Some systems expect binary to be
interpreted as string.

CREATE [EXTERNAL] TABLE [IF NOT EXI STS] [db_narme.]tabl e_nane LIKE FI LE PARQU
ET 'obj ect _storage path_of parquet file'

[PARTI TI ONED BY [SPEC] ([col _nane][, spec(value)][, spec(value)]...)]]

[STORED AS file_format]

STORED BY | CEBERG

[TBLPROPERTI ES (property_nane=property_value, ...)]

CREATE TABLE [IF NOT EXI STS] [db_nane.]tabl e _nanme LI KE PARQUET ' obj ect _stora
ge_path_of parquet file'

[PARTI TI ONED BY [SPEC] ([col _nane] [, spec(value)][, spec(value)]...)]]

STORED (AS | BY) | CEBERG

[TBLPROPERTI ES (property nanme=property value, ...)]

CREATE TABLE ctlf_table LIKE FI LE PARQUET 's3a://testbucket/files/schema. par

q
STORED BY | CEBERG

CREATE TABLE ctlf_table LI KE PARQUET 's3a://testbucket/files/schema. parq'
STORED BY | CEBERG,

24

Apache | ceberg features

In addition to time travel queries, expiring a snapshot, and using a snapshot to rollback to aversion of atable, you can
aso set any snapshot to be the current snapshot from Hive.

ALTER TABLE TBL_| CEBERG PART EXECUTE SET_CURRENT SNAPSHOT (<snapshot | D>)

ALTER TABLE TBL_| CEBERG PART EXECUTE SET_CURRENT SNAPSHOT (75212489901265493
11)

From Hive or Impala, you can run point in time queries for auditing and regulatory workflows on Iceberg tables.
Time travel queries can be time-based or based on a snapshot ID.

| ceberg generates a snapshot when you create, or modify, atable. A snapshot stores the state of atable. Y ou can
specify which snapshot you want to read, and then view the data at that timestamp. In Hive, you can use projections,
joins, and filtersin time travel queries. Y ou can add expressions to the timestamps, as shown in the examples. You
can expire snapshots.

Snapshot storage isincremental and dependent on the frequency and scale of updates. By default, Hive and Impala
use the latest snapshot. Y ou can query an earlier snapshot of Iceberg tablesto get historical information. Hive and
Impala use the latest schemato query an earlier table snapshot even if it has a different schema.

SELECT * FROM tabl e_nane FOR SYSTEM TIME AS OF 'tinme_stanp' [expression]

SELECT * FROM tabl e_nane FOR SYSTEM VERSI ON AS OF snapshot _id [expression]

e time_stamp

The state of the Iceberg table at the time specified by the UTC timestamp.
e snapshot_id

The ID of the | ceberg table snapshot from the history output.

SELECT * FROMt FOR SYSTEM TI ME AS OF ' 2021-08-09 10:35:57" LIMT 100;

SELECT * FROMt FOR SYSTEM VERSI ON AS OF 3088747670581784990 limt 100;
SELECT * fromice_11 FOR SYSTEM TIME AS OF now() - interval 30 m nutes;

Truncating an | ceberg table removes all rows from the table. A new snapshot is created. Truncation works for
partitioned and unpartitioned tables.

Although the table data and the table and column stats are cleared, the old snapshots and their data files continue to
exist to support time travel in the future.

25

Best practicesfor Iceberg in CDP

TRUNCATE t abl e_nane

TRUNCATE [TABLE] tabl e_name

TRUNCATE t;

From Hive, you can update datafrom aV2 Iceberg table.

Hive updates | ceberg V2 tables using a type of formatting defined by the | ceberg Spec. Row-level updates are
supported. | ceberg uses position delete files to make updates. For information about position delete files, see the
Delete data feature.

Updating table data generates a snapshot.
Y ou use a WHERE clause in your UPDATE statement. For example:

update tbl ice set b='Changed' where b in (select b fromthl _ice where a < 4

)

Hive evaluates rows from one table against a WHERE clause, and updates all the rows that match WHERE
conditions. The WHERE expression is similar to the WHERE expression used in SELECT.

Impala does not support making updates to | ceberg tables. Impala supports deletes and inserts. Impala can read
updates to Iceberg tables.

updat e tabl enanme set colum = value [, colum = value ...] [where expres
si on]

create external table tbl_ice(a int, b string, ¢ int) stored by iceberg tblp
roperties ('format-version' = 2");

insert into tbl _ice values (1, 'one', 50), (2, '"tw', 51), (3, 'three', 52),
(4, 'four', 53), (5, 'five', 54), (111, 'one', 55), (333, 'two', 56);

update tbl ice set b='Changed' where b in (select b fromtbl _ice where a <
4);

Based on large scale TPC-DS benchmark testing, performance testing and real-world experiences, Cloudera
recommends several best practices when using |ceberg.

26

https://iceberg.apache.org/spec/#row-level-deletes

Performance tuning

Follow these key best practices listed below when using | ceberg:
e Uselceberg asintended for analytics.

The table format is designed to manage a large, slow-changing collection of files. For more information, see the
| ceberg spec.
» Increase parallelism to handle large manifest list filesin Spark.

By default, the number of processors determines the preset value of the iceberg.worker.num-threads system
property. Try increasing parallelism by setting the iceberg.worker.num-threads system property to a higher value
to speed up query compilation.

» Reduce read amplification

Monitor the growth of positional deltafiles, and perform timely compactions.
» Speed up drop table performance, preventing deletion of data files by using the following table properties:

Set external .tabl e. purge=fal se and gc. enabl ed=f al se

« Tunethefollowing table properties to improve concurrency on writes and reduce commit failures: commit.retry
.num-retries (default is4), commit.retry.min-wait-ms (default is 100)

e Maintain arelatively small number of data files under the iceberg table/partition directory for efficient reads. To
aleviate poor performance caused by too many small files, run the following queries:

TRUNCATE TABLE t arget;
| NSERT OVERWRI TE TABLE target select * fromtarget FOR SYST
EM VERSI ON AS OF <preTruncat eSnapshot | d>;

* To minimize the number of delete files and file handles and improve performance, ensure that the Spark
write.distribution.mode table property valueis “hash” (the default setting for Spark Iceberg 1.2.0 onwards).

Learn the types of workloads best suited for |ceberg and when using V2 tables might improve query response.

I ceberg atomic DELETE and UPDATE operations resemble traditional RDBM S systems, but are not suitable for
OLTP workloads. Iceberg is not designed to handle high frequency transactions. To handle very large datasets and
frequent updates, use Apache Kudu.

Use Iceberg for managing large, infrequently changing datasets. Y ou can update and delete Iceberg V2 tables at the
row-level and not incur the overhead of rewriting the data files of V1 tables. Iceberg stores information about the
deleted recordsin position delete files. These files store the file paths and positions of the deleted records, eliminating
the need to rewrite the files. Iceberg performs a DELETE plus an INSERT operation in asingle transaction. This
technique speeds up queries. Query engines scan the data files and del ete files associated with a snapshot and merge
them, removing the deleted rows. For example, to remove all data belonging to a single customer:

DELETE FROM ice_thl WHERE user_id = 1234;
To update a column value in a specific record:
UPDATE ice thl SET col_v = col_v + 1 WHERE id = 4321,

Impala usesits own C++ implementation to deal with Iceberg tables. Thisimplementation provides significant
performance advantages over other engines.

To tune performance, try the following actions:

27

https://iceberg.apache.org/spec/
https://iceberg.apache.org/spec/#row-level-deletes
https://iceberg.apache.org/spec/#position-delete-files

Unsupported features and limitations

* Increase parallelism to handle large manifest list filesin Spark.

By default, the number of processors determines the preset value of the iceberg.worker.num-threads system
property. Try increasing parallelism by setting the iceberg.worker.num-threads system property to a higher value
to speed up query compilation.

» Speed up drop table performance, preventing deletion of data files by using the following table properties:

Set external.table.purge=fal se and gc. enabl ed=f al se

« Tunethe following table properties to improve concurrency on writes and reduce commit failures; commit.retry
.num-retries (default is4), commit.retry.min-wait-ms (default is 100)

* Read Iceberg V2 tables from Hive using vectorization when heavy table scanning occurs asin SELECT
COUNT(*) FROM TBL_ICEBERG_PART.

¢ set hivellap.io.memory.mode=cache;
* set hivellap.io.enabled=true;
« set hive.vectorized.execution.enabled=true;
» Uselceberg from Impalafor querying lceberg tables when latency is a concern.

The massively parallel SQL query engine, backend executors written in C++, and frontend (analyzer, planner)
written in Java delivers query results fast.

» Cache manifest files as described in the next topic.

In CDP 7.2.x, you can enable or disable manifest caching for Impala Coordinators and Catalogd by setting properties
in Cloudera Manager.

By default, only 8 catalogs can have their manifest cache active in memory.

To connect to more than 8 HDFS clusters, in Cloudera Manager, configure iceberg.io.manifest.cache.fileio-max in
catalogd_java_opts and the coordinator impalad_embedded_java_opts.

In the following task, you enable | ceberg manifest caching for the Impala Coordinator and Catalog Server.

1. Navigate to Cloudera Manager. .
2. Search for Iceberg.

Enable Iceberg manifest caching IMPALA-1 (Service-Wide) °

iceberg_manifest_cache_enabled
£¥; iceberg_manifest_cache_enabled

By default, manifest caching is enabled, but if you have turned it off, check Impala-1 (Service-Wide) to re-enable.

Cloudera does not support all featuresin Apache Iceberg. Thelist of unsupported features for Cloudera Data Platform
(CDP) differsfrom release to release. Also, Apache Iceberg in CDP has some limitations you need to understand.

28

Unsupported features and limitations

The following features are not supported in this release of CDP:
» Tagging and branching

A technical preview is supported from Hive (not Impala or Spark) in Cloudera Data Warehouse Public Cloud.
e Equality deletes
» Reading files outside the table directory

An unauthorized party who knows the underlying schema and file location outside the table location can rewrite
the manifest files within one table location to point to the data files in another table location to read your data.
» Buckets defined from Hive do not create like buckets in | ceberg.

For more information, see "Bucketing workaround" below.
» Using Iceberg tables as Spark Structured Streaming sources or sinks
* Pylceberg
» Migration of Delta Lake tablesto | ceberg

The following features have limitations:

* When the underlying table is changed, you need to rebuild the materialized view manually, or use the Hive query
scheduling to rebuild the materialized view.

* From Impala, you can read, but not write, position updates and deletes.
« Equality updates and deletes are not supported as previously mentioned.

« Anequdity deletefilein thetableisthe likely cause of a problem with updates or deletes in the following
situations:

« In Change Data Capture (CDC) applications
e Inupserts from Apache Flink
* From athird-party engine
« AnIceberg table that points to another | ceberg table in the HiveCatalog is not supported.

For example:

CREATE EXTERNAL TABLE ice_t
STORED BY | CEBERG
TBLPROPERTI ES ('iceberg.table_ identifier'="db.th");

» Seedso Iceberg data types limitations and unsupported data types.

A query from Hive to define buckets/folders in Iceberg do not create the same number of buckets/folders as the
same query createsin Hive. In Hive bucketing by multiple columns using the following clause creates 64 buckets
maximum inside each partition.

| CLUSTERED BY (|
| id, I
[partition_id) [
| I NTO 64 BUCKETS

Defining bucketing from Hive on multiple columns of an Iceberg table using this query creates 64* 64 buckets/
folders; consequently, bucketing by group does not occur as expected. The operation will create many small files at
scale, adrag on performance.

29

https://iceberg.apache.org/spec/#row-level-deletes
https://docs.cloudera.com/cdw-runtime/cloud/iceberg-how-to/topics/iceberg-data-types.html#pnavId2

Accessing | ceberg tables

Add multiple bucket transforms (partitions) to more than one column in the current version of Iceberg as follows:

bucket (p, col 1, col2) =[bucket(m coll) , bucket(n, col2)] where p = m* n

Accessing Iceberg tables

CDP uses Apache Ranger to provide centralized security administration and management. The Ranger Admin Ul is
the central interface for security administration. Y ou can use Ranger to create two policies that allow usersto query
| ceberg tables.

How you open the Ranger Admin Ul differs from one CDP service to another. In Management Console, you can
select your environment, and then click Environment Details Quick Links Ranger .

dw-team-env
aws crn:cdp:environments:us-west-1:9d74eeed-1 cad-45b73d:environment:6
f4157a1f1%ae &

@ H US West (Oregon) - us-west-2

A shared environment for hive/impala data wareho

Data Lake upgrade available

& Data Lake Details

NMAME MODES SCALE

dw-team-env-dl @2 »wo Qo Light Duty

Y ou log into the Ranger Admin Ul, and the Ranger Service Manager appears.

:ﬁ :Ranger UAccess Manager [Audit [(#)Security Zone & Settings e admin ~
Service Managar Last Response Time : 12/20/2022 02:16:44 PM
Service Manager Security Zone: Solect Zone Na v @import B Expont
[~ HDFS +08 [~ HBASE + [~ HADOOP SQL + 0640
cm_hdfs - # u cm_hbase b # n Hadoop S0L - 4 u

The default policies that appear differ from service to service. You need to set up two Hadoop SQL policiesto query
| ceberg tables:

* Oneto authorize users to access the Iceberg files

Follow stepsin "Edit a policy to access | ceberg files' below.

30

Accessing | ceberg tables

» Oneto authorize usersto query Iceberg tables

Follow stepsin "Creating a policy to query an Iceberg table" below.

e Obtain the RangerAdminrole.
e Get the user name and password your Administrator set up for logging into the Ranger Admin.

The default credentials for logging into the Ranger Admin Web Ul are admin/admin123.

Y ou need to navigate to Ranger Admin Ul to create a policy for users to access I ceberg tables. How you navigate to
the Ranger Admin Ul differs from one CDP service to another, and typically there is more than one path. Y ou learn
one way to navigate to the Ranger Admin Ul from Data Hub.

1. Loginto CDP, and in Cloudera Management Console, click Data Hubs Clusters.

CLOUDZRA
Managemant Consale

2. In Data Hubs, select the name of your Data Hub from the list.

31

Accessing | ceberg tables

3. In Environment Details, click the link to your Data L ake.
For example, click discale8-bc8bgz.

dWs Environment Details

MAMME DAaTA LARE
discaleB8-be3bgz discale8-bc3bgz

In Data Lake Details, in Quick Links, Ranger appears:

QUICK LINKS

O Atlas O Ranger © Data
Catalog

Y ou learn how to edit the existing default Hadoop SQL Storage Handler policy to accessfiles. This policy is one of
the two Ranger policies required to use | ceberg.

The Hadoop SQL Storage Handler policy allows references to | ceberg table storage location, which is required for
creating or altering atable. Y ou use a storage handler when you create afile stored as Iceberg on the file system or
object store.

In this task, you specify | ceberg as the storage-type and allow the broadest access by setting the URL to *.

The Hadoop SQL Storage Handler policy supports only the RW Storage permission. A user having the required RW
Storage permission on aresource, such as | ceberg, that you specify in the storage-type properties, is alowed only

to reference the table location (for create/alter operations) in Iceberg. The RW Storage permission does not provide
access to any table data. Y ou need to create the Hadoop SQL policy described in the next topic in addition to this
Hadoop SQL Storage Handler policy to access datain tables.

For more information about these policy settings, see Ranger Storage Handler documentation.

32

https://docs.cloudera.com/runtime/7.2.17/security-ranger-authorization/topics/security-ranger-resource-policy-storage-handler.html

Accessing | ceberg tables

Procedure

1. Loginto Ranger Admin Web Ul.
The Ranger Service Manager appears:

-ﬁ =Range.r U Access Manager [Audit [*)Security Zone & Settings & admin ~
Last Respanse Time : 12/20/2022 02:16:44 PM
Service Manager Security Zone: Salect Nai * @impon B Expont

(= HDFs +88 = HBASE +m [(=HADOOPSQL + B @
cm_hdfs - 4 u cm_hbase - # n Hadoop S0L - s u

2. InPolicy Name, enable the all - storage-type, storage-url policy.
List of Policies : Hadoop SQL

a, Search for your policy

Policy ID Palicy Name Palicy Labels Status

g all - global --

9 all - database, takle, solumn ==

10 all - database, takle --

all - staracpe-Type, storage-url

3.
In Service Manager, in Hadoop SQL, select Edit / and edit the all storage-type, storage-url policy.

4. Below Policy Label, select storage-type, and enter iceberg..

33

Accessing I ceberg tables

5. In Storage URL, enter the value *, enable Include.

Policy Type m
Policy D XD

rolicy Nama all - storage-type, storage-url i

Policy Label

kL iceberg

Storage URL * . m

For more information about these policy settings, see Ranger storage handler documentation.
6. In Allow Conditions, specify roles, users, or groups to whom you want to grant RW storage permissions.

Y ou can specify PUBLIC to grant access to |ceberg tables permissionsto all users. Alternatively, you can grant
access to one user. For example, add the systest user to the list of users who can access | ceberg:

Allow Conditions:

Select Role Select Group Select User

hive | | = beacon | | = dpprofiler |
x hue | | admin | | % impala |

Systest

For more information about granting permissions, see Configure a resource-based policy: Hadoop-SQL.
7. Addthe RW Storage permission to the policy.
8. Saveyour changes.

Creating a policy to query an Iceberg table

Y ou learn how to set up the second required policy for using Iceberg. This policy manages SQL query access to
| ceberg tables.

https://docs.cloudera.com/runtime/7.2.17/security-ranger-authorization/topics/security-ranger-resource-policy-storage-handler.html
https://docs.cloudera.com/runtime/7.2.17/security-ranger-authorization/topics/security-ranger-resource-policy-configure-hive.html

Accessing | ceberg tables

Y ou create a Hadoop SQL policy to allow roles, groups, or users to query an Iceberg table in a database. In thistask,

you see an exampl e of just one of many ways to configure the policy conditions. Y ou grant (allow) the selected roles,
groups, or users the following add or edit permissions on the table: Select, Update, Create, Drop, Alter, and All. You
can also deny permissions.

For more information about creating this policy, see Ranger documentation.

1. Loginto Ranger Admin Web UI.
The Ranger Service Manager appears.
2. Click Add New Poalicy.
3. Fill inrequired fields.
For example, enter the following required settings:
« InPolicy Name, enter the name of the policy, for example |cebergPolicyl.
« Indatabase, enter the name of the database controlled by this policy, for exampleicedb.
* Intable, enter the name of the table controlled by this policy, for exampleicetable.
* In columns, enter the name of the column controlled by this policy, for example enter the wildcard asterisk (*)
to allow access to al columns of icetable.
* Accept defaults for other settings.

Create Policy

Policy Details:

Lo Access
Policy Name * lcebergPolicy1) Enabled §
Puolic e
database v leedb
v icetable m
v inciude ¢

4. Scroll down to Allow Conditions, and select the roles, groups, or users you want to access the table.

Y ou can use Deny All Other Accessesto deny accessto all other roles, groups, or users other than those specified
in the allow conditions for the policy.

35

https://docs.cloudera.com/runtime/7.2.17/security-ranger-authorization/topics/security-ranger-resource-policy-configure-hive.html

Creating an Iceberg table

5. Select permissionsto grant.
For example, select Create, Select, and Alter. Alternatively, to provide the broadest permissions, select All.

Allow Conditions:

Saloct Aolo Salect Group

Ignore RW Storage and other permissions not named after SQL queries. These are for future implementations.
6. Click Add.

A step-by-step procedure describes how to create an Apache | ceberg table from a client connection to Hive or Impala,
or from Hue in Data Hub. Y ou see how to access and use the query editor Hue to create an | ceberg table.

In thistask, from a Data Hub cluster, you open Hue, and use Hive or Impalato create atable.

* You must meet the prerequisites to query |ceberg tables, including obtaining Ranger access permissions.

1. Loginto CDP, and click Data Hub.

CLOUDERA Data Hubs / ba
Management Console ~dld FUDS -

CLUSTER TEMPLATE

7.2.15 - Real-time Data Mart: Apache Impala, Hi

STATUS REASON

Cluster infrastructure is now stopping.

er Management _
aws Enyironment Details

NAME DATA LAKE
jsifontes-env jsifontes-d
@ Services

B cMm-ul @) Hue

2. Click Hue.
3. Select adatabase.

36

Creating an Iceberg partitioned table

4.

5.

Enter aquery to create asimple Iceberg table in the default Parquet format.
Hive example:

CREATE EXTERNAL TABLE ice t1 (i int, s string, ts tinmestanp, d date)
STORED BY | CEBERG,

Impala example:

CREATE TABLE ice t2 (i int, s string, ts tinestanp, d date)
STORED BY | CEBERG

In CDP, CREATE EXTERNAL TABLE, and just CREATE TABLE, are valid from Hive. You use the
EXTERNAL keyword from Hive to create the | ceberg table to purge the data when you drop the table. In CDP,
from Impala, you must use CREATE TABLE to initialize the I ceberg table.

Click ™ torunthe query.

The ease of use of the Iceberg partitioning is clear from an example of how to partition a table using the backward
compatible, identity-partition syntax. Alternatively, you can partition an | ceberg table by column values from Hive or
Impala.

Y ou can specify partitioning that is backward compatible with Iceberg V1 using the PARTITION BY clause. This
type of table is called an identity-partitioned table. For more information about partitioning, see the Apache I ceberg
documentation.

In Hue, select a database.

Create an identity-partitioned table.
Hive:

CREATE EXTERNAL TABLE ice extl (i int, s string, ts tinmestanp, d date) P
ARTI TI ONED BY (state string)

STORED BY | CEBERG

STORED AS ORC;

Impala

CREATE TABLE ice ext2 (i int, s string, ts tinestanp, d date) PARTI TI ONED
BY (state string)
STORED BY | CEBERG,

Click ™ torun the query.

Create atable and specify an identity transform, such as bucket, truncate, or date, using the Iceberg V2
PARTITION BY SPEC clause.
Hive:

CREATE TABLE ice t transforns_1 (i int, s string, ts tinestanp, d date)
PARTI TI ONED BY SPEC (TRUNCATE(10, i), BUCKET(11, s), YEAR(ts))

37

https://iceberg.apache.org/spec/?h=partitioning#partition-transforms
https://iceberg.apache.org/spec/?h=partitioning#partition-transforms

Expiring snapshots

STORED by | CEBERG
Impala

CREATE TABLE ice_t transforns (i int, s string, ts tinestanp, d date)PAR
TI TI ONED BY SPEC (TRUNCATE(10, i), BUCKET(11, s), YEAR(ts))STORED AS |CE
BERG,

5 Click *» torun the query.

Y ou can expire snapshots of an |ceberg table using an ALTER TABLE query from Hive or Impala. Y ou should
periodically expire snapshots to del ete data files that are no longer needed, and reduce the size of table metadata.

Each write to an | ceberg table creates a new snapshot, or version, of atable. Snapshots can be used for time-travel
queries, or the table can be rolled back to any valid snapshot. Snapshots accumulate until they are expired by the
expire_snapshots operation.

Enter a query to expire snapshots older than the following timestamp: '2021-12-09 05:39:18.689000000'

ALTER TABLE test tabl e EXECUTE expire_snapshots('2021-12-09 05: 39: 18. 6890000
00");

Y ou can append data to an Iceberg table by inserting values or by selecting the data from another table. Y ou can
update data, replacing the old data.

Y ou use the INSERT command in one of the following ways to populate an | ceberg table from Hive:

* INSERT INTOtVALUES(1, ‘asf’, true);
* INSERT INTOt SELECT * FROM s;
* INSERT OVERWRITE t SELECT * FROM s;

I NSERT INTO t VALUES (1, ‘asf’, true);
I NSERT I NTO t SELECT * FROM s;
I NSERT OVERWRI TE t SELECT * FROM s;

Y ou see how to use asimple ALTER TABLE statement to migrate an external Hive table to an Iceberg table. Y ou see
how to configure table input and output by setting table properties.

38

Selecting an Iceberg table

When you migrate an external Hive table to Iceberg, Hive makes the following changes:
» Convertsthe storage_handler, serde, inputformat and outputformat properties of the tablein HMS to use the
| ceberg specific classes.
» Readsthe footers of the existing data files and generates the necessary |ceberg metadata files based on the footers.
e Commitsall the datafiles to the Iceberg table in a single commit.

Note: To prevent loss of new and old table data during migration of atable to Iceberg, do not drop or move
B the old table during migration. Exception: If you set the table property 'external .table.purge’="FALSE', no data
loss occurs when you drop the table.

* You must meet the prerequisites for using Iceberg mentioned earlier.

Restriction: Migrating an Impalatable to Iceberg is not supported in this release.

1. Logintothe CDP web interface and navigate to the Data Warehouse service.
2. Inthe Data Warehouse service, in the Overview page, locate your Hive Virtua Warehouse, and click Hue.
Instead of using Hue, you can connect over JDBC to the Hive Virtua Warehouse, and run the query.

3. Enter aquery to use a database.
For example:

USE nydb;

4. Enter aHive query to migrate an existing external Hive table to an Iceberg v2 table.
For example:

ALTER TABLE t bl
SET TBLPROPERTI ES (' storage_handl er' =" or g. apache. i ceberg. nr. hi ve. Hi vel c
eber gSt or ageHandl er ',

"format-version' ="'2");

Do not drop the table as explained above unless you set the 'external .table.purge’ table property to false.

Click ™ torunthe queries.
An Iceberg V2 tableis created. The Hive table remainsintact.

Y ou see an example of how to read an Apache Iceberg table, and understand the advantages of | ceberg.

Working with timestampsin I ceberg, you do not need to know whether the table is actually partitioned by month,

day or hour, based on the timestamp value. Y ou can simply supply a predicate for the timestamp value and I ceberg
converts the timestamp to month/day/hour transparently. Hive/lmpala must maintain actual partition valuesin a
separate column (for example, ts month or ts_day). Forgetting to reference the derived partition column in your query
can lead to inadvertent full table scans.

By default iceberg.table_identifier is not set in CDP, so you can use the familiar <db_name.<table_name> in queries.

39

Running time travel queries

* You must meet the prerequisites to query |ceberg tables mentioned earlier.

1. Useadatabase.
For example:

USE nydat abase;

2. Query an lceberg table partitioned by city.
For example:

SELECT * FROM ice_t2 WHERE city="Bangal ore";

Y ou query historical snapshots of data using the FOR SYSTEM_TIME AS OF '<timestamp>' FOR
SYSTEM_VERSION AS OF <snapshot_id> clausesin a select statement. Y ou see how to use AS OF to specify a
snapshot of your |ceberg data at a certain time.

Y ou can inspect the history of an Iceberg table to see the snapshots. Y ou can query the metadata of the | ceberg table
using aSELECT ... AS OF statement to run time travel queries. Y ou use history information from a query of the
database to identify and validate snapshots, and then query a specific snapshot AS OF a certain Timestamp value.

* You must be aware of the table history.

However, this can include commits that have been rolled back.
e You must have access to valid snapshots.
¢ You must meet the prerequisites to query | ceberg tables mentioned earlier.

1. View thetable history.

SELECT * FROM db. t abl e. hi story;
2. Check the valid snapshots of the table.

SELECT * FROM db. t abl e. snapshot s;
3. Query aspecific snapshot by providing the timestamp and snapshot_id.

SELECT * FROM T

FOR SYSTEM TI ME AS OF <TI MESTAMP>;
SELECT * FROM t

FOR SYSTEM VERSI ON AS OF <SNAPSHOT | D>;

40

Updating an I ceberg partition

Y ou see how to update | ceberg table partitioning in an existing table and then how to change the partitioning to be
more granular.

Partition information is stored logically, and only in table metadata. When you update a partition spec, the old data
written with an earlier spec remains unchanged. New data is written using the new spec in anew layout. Metadata for
each of the partition versionsis separate.

e You must meet the prerequisites to query |ceberg tables mentioned earlier.

1. Create atable partitioned by year.
Hive

CREATE EXTERNAL TABLE ice t (i int, j int, ts tinestanp)
PARTI TI ONED BY SPEC (truncate(5, j), year(ts))

STORED BY | CEBERG
Impala

CREATE TABLE ice_t (i int, j int, ts timestmap)

PARTI TI ONED BY SPEC (truncate(5, j), year(ts))
STORED BY | CEBERG,

2. Split the datainto manageabl e files using buckets.

ALTER TABLE ice_t SET PARTI TI ON SPEC (bucket (13, i));
3. Partition the table by month.

ALTER TABLE ice_t SET PARTITION SPEC (truncate(5, j), nmonth(ts));

Y ou complete atask that creates Iceberg tables from Impala with mock data that you can test drive using your own
queries. You learn how to work with partitioned tables.

* You must meet the prerequisites to query |ceberg tables mentioned earlier, including obtaining Ranger access
permissions.

1. InImpala, use adatabase.
2. Create an Impalatable to hold mock datafor this task.

create external table nock rows stored as parquet as
select x from (

41

Test driving Iceberg from Impala

with v as (values (1 as x),
VvV V2,

select v.x fromyv,
) &

(1),

v vb,

(1))

VvV V6

(1), (1),

v v3, Vv V4,

3. Create another Impala table based on mock_rows.

create external
sel ect

FROM TI MESTAMP(DAYS_SUB(now() ,

tabl e custoner_denp stored as parquet as

cast (TRUNC(RAND(7)*365*1) as bigint)), '

yyyy-MM) as year nonth,

DAYS_SUB(now() |,
CONCAT(

cast (TRUNC(RAND(1)
cast (TRUNC(RAND(2)
cast (TRUNC(RAND(3)
cast (TRUNC(RAND(4)

) as ip,
CONCAT("USER ", cast (
as emil,
CONCAT("USER ", cast (
CONCAT("USER ", cast (

cast (RAND(8)*10000 as
cast (RAND(9) *10000 as

cast (TRUNC(RAND(7)*365*1) as bigint)) as ts,

* 250 + 2) as string), '.' ,
* 250 + 2) as string), '.',
* 250 + 2) as string), '.',
* 250 + 2) as string)

TRUNC(RAND(4) * 1000) as string),' @onedomnai n.com)
TRUNC(RAND(5) * 1000) as string)) as usernane,
TRUNC(RAND(6) * 100) as string)) as country,

doubl e) as netric_1,

doubl e) as netric_2,

cast (RAND(10)*10000 as double) as netric_3,
cast(RAND(11)*10000 as double) as netric_4,
cast (RAND(12)*10000 as double) as netric_5

from nock_rows

4. Create another Impalatable based on mock_rows.

create external
sel ect

FROM TI MESTAMP(DAYS_SUB(now() ,

tabl e custoner_denp2 stored as parquet as

cast (TRUNC(RAND(7)*365*1) as bhigint)),

"yyyy-MM) as year_nonth,

DAYS_SUB(now() ",
CONCAT(

(TRUNC(RAND(1)
cast (TRUNC(RAND(2)
cast (TRUNC(RAND(3)
cast (TRUNC(RAND(4)

cast

) as ip,
CONCAT("USER ", cast (
as emil,
CONCAT("USER ", cast (
CONCAT("USER ", cast (

cast (TRUNC(RAND(7)*365*1) as bigint)) as ts,

string), '.' ,
string), '.',

string), '.',
string)

* 250
* 250
* 250
* 250

2) as
2) as
2) as
2) as

+ + + +

TRUNC(RAND(4) * 1000) as string),"' @onedonai n.com)

TRUNC(RAND(5) * 1000) as string)) as usernane,
TRUNC(RAND(6) * 100) as string)) as country,

cast (RAND(8)*10000 as double) as netric_1,
cast (RAND(9)*10000 as double) as netric_2,
cast (RAND(10)*10000 as double) as netric_3,
cast(RAND(11)*10000 as double) as netric_4,
cast (RAND(12)*10000 as double) as netric_5

from nock_rows

5. Create an Iceberg table from the customer_demo table.

CREATE TABLE cust oner _deno_i ceberg STORED BY | CEBERG AS SELECT * FROM cu

st omer _denw;

6. Insert into the customer_demo_iceberg table the results of selecting all data from the customer_demo? table.

I NSERT | NTO cust oner _deno_i ceberg sel ect * from cust oner _deno2;
I NSERT | NTO cust oner _deno_i ceberg sel ect * from cust oner _deno2;

42

Hive demo data

I NSERT | NTO cust onmer _deno_i ceberg sel ect * from cust oner _deno2;

7. Create an |ceberg table partitioned by the year_ month column and based on the customer_demo_iceberg table.

CREATE TABLE custoner _deno_i ceberg_part PARTI TI ONED BY(year _nont h) STORED
BY | CEBERG

AS SELECT ts, ip, enmil, usernane , country, netric_1 , metric_2 , netric

3, netric_4 , netric_5, year_nonth

FROM cust oner _deno_i ceber g;

8. Split the partitioned data into manageable files.

ALTER TABLE cust omer _deno_i ceberg _part SET PARTI TI ON SPEC (year _nont h, BU
CKET(15, country));

9. Insert the results of reading the customer_demo_iceberg table into the partitioned table.

I NSERT | NTO cust onmer _deno_i ceberg_part (year_nonth, ts, ip, email, usern
ane, country, netric_1, metric_2, metric_3, metric_4, nmetric_5b)
SELECT year _nonth, ts, ip, email, username, country, nmetric_1, nmetric_2,

metric 3, nmetric_4, netric_ 5
FROM cust oner _deno_i ceber g;

10. Run time travel queries on the Iceberg tables, using the history output to get the snapshot id, and substitute the id
in the second SELECT query.

SELECT * FROM cust oner _deno_i ceberg FOR SYSTEM Tl ME AS OF ' 2021-12-09 05
: 39: 18. 689000000" LIM T 100;

DESCRI BE HI STORY cust oner _deno_i ceber g;

SELECT * FROM cust oner _deno_i ceberg FOR SYSTEM VERSI ON AS OF <snapshot
id>LIMT 100;

To test drive Iceberg from Hive, you use demo datain the airline_online_iceberg database. To test drive Iceberg from
Hive, you need to set up Hive demo data.

The Airlines demo data for Iceberg is stored in the airline_online iceberg database. The following queries created and
set up this database.

create database if not exists airline_ontine_iceberg;
use airline_ontime_iceberg;

set hive.vectorized. execution. enabl ed=f al se;

set hive. stats.col um. aut ogat her =f al se;

The following Hive external tables were created in the airline_online_iceberg database:

e airports
e airlines
e planes
« flights

create external table if not exists airports (
iata string,

43

Hive demo data

ai rport string,
city string,

st at e doubl e,
country string,
| at doubl e,

| on doubl e

stored as orc;

create external table if not exists airlines (
code string,
description string

stored as orc;

create external table if not exists planes (
tail num string,
owner _type string
manuf act urer string,
i ssue_date string
nodel string,
status string,
aircraft _type string,
engi ne_type string,
year int

stored as orc;

create external table if not exists flights (
mont h int,
dayof nonth int,
dayof week i nt,
deptinme int,
crsdeptine int,
arrtime int,
crsarrtinme int,
uni quecarrier string,
flightnumint,
tail num string,
act ual el apsedtinme int,
crsel apsedtine int,
airtime int,
arrdel ay int,
depdel ay int,
origin string,
dest string,
di stance int,
taxiin int,
taxi out int,
cancel l ed int,
cancel | ati oncode string,
di verted string,
carrierdel ay int,
weat her del ay i nt,
nasdel ay int,
securi tydel ay int,
| ateai rcraftdel ay int

partitioned by (year int)
stored as orc;

Hive demo data

| oad data inpath '${datapath}/airline_ontine_i
ai rports;

| oad data inpath '${datapath}/airline_ontine_i
airlines;

| oad data inpath '${datapath}/airline_ontine_i
| anes;

| oad data inpath '${datapath}/airline_ontine_i
nto table flights partition (year=1995);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=1996);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=1997);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=1998);

| oad data inpath '${datapath}/airline_ontine_i
nto table flights partition (year=1999);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=2000);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=2001);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=2002);

| oad data inpath '${datapath}/airline_ontine_i
nto table flights partition (year=2003);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=2004);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=2005);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=2006);

| oad data inpath '${datapath}/airline_ontine_i
nto table flights partition (year=2007);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=2008);

ceberg.

ceberg.

ceberg.

ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.

ceberg.

db/ ai r ports'

db/airlines'

db/ pl anes'

db/ flights/year=1995'
db/flights/year=1996
db/ flights/year=1997
db/ flights/year=1998'
db/flights/year=1999
db/ flights/year=2000'
db/ flights/year=2001"'
db/flights/year=2002
db/ flights/year=2003'
db/ flights/year=2004
db/flights/year=2005
db/ flights/year=2006'
db/ flights/year=2007"
db/flights/year=2008

into tabl e

into table

into table p

ALTER TABLE pl anes ADD CONSTRAI NT pl anes_pk PRI MARY KEY (tail num DI SABLE NO

VALI| DATE;

ALTER TABLE flights ADD CONSTRAI NT pl anes_fk FOREI GN KEY (tailnum) REFEREN

CES pl anes(tail num) DI SABLE NOVALI DATE RELY

ALTER TABLE airlines ADD CONSTRAI NT airlines_pk PRI MARY KEY (code) DI SABLE

NOVALI DATE

ALTER TABLE flights ADD CONSTRAI NT airlines_fk FOREI GN KEY (uni quecarrier)

REFERENCES ai rli nes(code) DI SABLE NOVALI DATE RELY;

ALTER TABLE airports ADD CONSTRAI NT airports pk PRI MARY KEY (iata) DI SABLE N

OVALI| DATE;

ALTER TABLE flights ADD CONSTRAI NT airports_orig_fk FOREI GN KEY (origin)
REFERENCES ai rports(iata) DI SABLE NOVALI DATE RELY;
ALTER TABLE flights ADD CONSTRAI NT airports_dest_fk FOREI GN KEY (dest) RE
FERENCES ai rports(iata) DI SABLE NOVALI DATE RELY

ALTER TABLE airports SET TBLPROPERTIES (' storage_handl er' = org. apache. i ceb

erg. nr. hi ve. H vel cebergSt orageHandl er') ;

45

Test driving Iceberg from Hive

ALTER TABLE airlines SET TBLPROPERTIES ('storage_handl er' =" org. apache. i cebe
rg.nr. hive. Hi vel ceber gSt orageHandl er ') ;

ALTER TABLE pl anes SET TBLPROPERTI ES (' st orage_handl er' =' or g. apache. i ceber g.
nr . hi ve. Hi vel ceber gSt orageHandl er') ;

ALTER TABLE flights SET TBLPROPERTIES (' storage_handl er' =" org. apache. i ceber
g. nr. hi ve. H vel ceber gSt or ageHandl er') ;

Y ou learn how to access the Hive demo data, which you can use to get hands-on experience running Iceberg queries.

guery sample airline demo datain Hue.

* You must meet the prerequisites to query |ceberg tables.
* You obtained the Ranger permissions to run Hive queries.

1. Connect to Hive running in a Data Hub cluster.

2. Runthe queriesin the previous topic, "Hive demo data" to set up the following databases: airline_ontime_iceberg,
airline_ontime_orc, airline_ontime_parquet.

3. Usetheairline_ontime_iceberg database.
4. Takealook at the tablesin the airline_ontime_iceberg database.

USE airline_ontine_iceberg;
SHOW TABLES;

Flightsisthe fact table. It has 100M rows and three dirmensions, ariline, airports, and planes. This records flights
for more than 10 yearsin the US, and includes the following details:

e origin
e dedtination
e delay
e artime
5. Query the demo data from Hive.

For example, find the flights that departed each year, by IATA code, airport, city, state, and country. Find the
average departure delay.

SELECT f.nmonth, a.iata, a.airport, a.city, a.state, a.country
FROM flights f,

airports a

WHERE f.origin = a.iata

GROUP BY

f . nmont h,

a.iata,

a.airport,

a.city,

a.state,

a.country

HAVI NG COUNT(*) > 10000

ORDER BY AV f . DepDel ay) DESC

46

| ceberg data types

LIMT 10;

Output appears as follows:

feccoccococodmoocoonoo feccoccococooccococoococccocoocococooooooo feccoccocoooococo
feoccoocococodmoocoooonoocs +
| f.nonth a.iata | a. airport | a.city
| a.state | a.country |
Focococococdmocococoo FococococococococoCcoCoCoOCoOCoCoOCoCoooo Fococcoccococooooooo
feccoocococodmooccocoonoocs +
| 12 ORD Chi cago O Hare International | Chicago
| NULL | USA |
| 6 EVIR Newar k | ntl | Newar k
| NULL | USA |
| 7 JFK John F Kennedy Intl | New York
| NULL | USA
| 6 | AD Washi ngton Dull es | nternational | Chantilly
| NULL | USA |
| 7 EVIR Newar k | ntl | Newar k
| NULL | USA [
| 6 PHL Phi | adel phia Intl | Phil adel phia
| NULL | USA
| 1 ORD Chi cago O Hare International | Chicago
| NULL | USA |
6 ORD Chi cago O Hare International | Chicago
| NULL | USA [
7 ATL WIlliamB Hartsfield-Atlanta Intl | Atlanta
| NULL | USA [
| 12 MDW Chi cago M dway | Chicago
| NULL | USA |
e L L T L L T T TR R r=r= fooccocooococoooooo
Fococococococoodmoocooooooooo +
10 rows selected (103.812 seconds)
6. Split the partitioned data into manageable files.
ALTER TABLE airports SET PARTI TI ON SPEC (i at a, BUCKET(15, country));

Iceberg data types

References include | ceberg data types and atable of equivalent SQL data types by Hive/lmpala SQL engine types.

Iceberg supported data types

Table 2:

| ceberg data type SQL datatype Hive Impala

binary BINARY BINARY
boolean BOOLEAN BOOLEAN BOOLEAN

date DATE DATE DATE
decimal(P, S) DECIMAL(P, S) DECIMAL (P, S) DECIMAL (P, S)
double DOUBLE DOUBLE DOUBLE
fixed(L) BINARY Not supported
float FLOAT FLOAT FLOAT

47

| ceberg table properties

| ceberg data type SQL data type Hive Impala

TINYINT, SMALLINT, INT INTEGER INTEGER
list ARRAY ARRAY Read only
long BIGINT BIGINT BIGINT
map MAP MAP Read only
string VARCHAR, CHAR STRING STRING
struct STRUCT STRUCT Read only
time STRING Not supported
timestamp TIMESTAMP TIMESTAMP TIMESTAMP
timestamptz TIMESTAMPWITH LOCAL Use TIMESTAMP WITH Read timestamptz into
TIME ZONE LOCAL TIMEZONE for handling | TIMESTAMP values
thesein queries .
Writing not supported
uuid none STRING Not supported
Writing to Parquet is not
supported

Data type limitations

Animplicit conversion to an Iceberg type occurs only if thereis an exact match; otherwise, a cast is needed. For
example, toinsert aVARCHAR(N) column into an I ceberg table you need a cast to the VARCHAR type as | ceberg
does not support the VARCHAR(N) type. Toinsert aSMALLINT or TINYINT into an I ceberg table, you need a cast
tothe INT type as | ceberg does not support these types.

| ceberg supports two timestamp types:

o timestamp (without timezone)
e timestamptz (with timezone)

In Spark 3.3 and earlier, Spark SQL supports asingle TIMESTAMP type, which maps to the I ceberg timestamptz
type. However, Impalais unable to write to | ceberg tables with timestamptz columns. To create | ceberg tables from
Spark with timestamp rather than timestamptz columns, set the following configurations to true:

» gpark.sgl.iceberg.handle-timestamp-without-timezone
o spark.sgl.iceberg.use-timestamp-without-timezone-in-new-tables

Configure these properties only on Spark 3.3 and earlier.

Spark still handles the timestamp column as a timestamp with local timezone. Inconsistent results occur unless Spark
isrunningin UTC.

Unsupported data types
Impala does not support the following I ceberg data types:

e« TIMESTAMPTZ (only read support)
 FIXED
« UUID

Iceberg table properties

The CDP environment for querying tables from Hive overrides some | ceberg table properties. Y ou learn which table
properties are supported for querying tables from Impala.

48

| ceberg table properties

| ceberg documentation describes all the properties for configuring tables. This documentation focuses on key
properties for working with Iceberg tablesin CDP.

| ceberg supports concurrent writes by default. Y ou can tune Iceberg v2 table properties for concurrent writes. Y ou set
the following properties if you plan to have concurrent writers on Iceberg v2 tables:

e commit.retry.min-wait-ms
e commit.retry.num-retries

CDP supports adding the Parquet compression type using table properties. For more information, see Iceberg
documentation about Compression Types.

Y ou can use the Alter Table feature to set a property. From Hive, the following |ceberg table property overrides arein
effect:

* iceberg.mr.split.size overrides read.split.target-size.
» read.split.open-file-cost is overridden.

Y ou can tune | ceberg v2 table properties for concurrent writes. From Impala, the following subset of Iceberg table
properties are supported:

* history.expire.min-snapshots-to-keep

Valid values: integers. Default = 1
« write.format.default

Valid value: Parquet
* write.metadata.del ete-after-commit.enabled

Valid values: true or false. Default = TBD.
* write.metadata.previous-versions-max

Valid values: integers. Default = 100.
* write.parquet.compression-codec

Valid values. GZIP, LZ4, NONE, SNAPPY (default value), ZSTD
e write.parquet.compression-level

Validvaues: 1 - 22. Default =3
e write.parquet.row-group-size-bytes

Valid values: 8388608 (or 8 MB) - 2146435072 (or 2047MB). Overiden by PARQUET_FILE_SIZE.
* write.parquet.page-size-bytes

Valid values: 65536 (or 64KB) - 1073741824 (or 1GB).
e writeparquet.dict-size-bytes

Valid values: 65536 (or 64KB) - 1073741824 (or 1GB)

49

https://iceberg.apache.org/docs/latest/configuration/
https://spark.apache.org/docs/2.4.3/sql-data-sources-parquet.html#configuration

	Contents
	Apache Iceberg features
	Alter table feature
	Create table feature
	Create table as select feature
	Create table … like feature
	Create partitioned table as select feature
	Delete data feature
	Describe table metadata feature
	Drop table feature
	Expire snapshots feature
	Insert table data feature
	Load data inpath feature
	Load or replace partition data feature
	Materialized view feature
	Materialized view rebuild feature
	Merge feature
	Migrate Hive table to Iceberg feature
	Changing the metadata location

	Flexible partitioning
	Partition evolution feature
	Partition transform feature

	Query metadata tables feature
	Rollback table feature
	Select Iceberg data feature
	Schema evolution feature
	Schema inference feature
	Snapshot management
	Time travel feature
	Truncate table feature
	Update data feature

	Best practices for Iceberg in CDP
	Migrating to V2 tables before row-level changes

	Performance tuning
	Configuring manifest caching in Cloudera Manager

	Unsupported features and limitations
	Accessing Iceberg tables
	Opening Ranger in Data Hub
	Editing a policy to access Iceberg files
	Creating a policy to query an Iceberg table

	Creating an Iceberg table
	Creating an Iceberg partitioned table
	Expiring snapshots
	Inserting data into a table
	Migrating a Hive table to Iceberg
	Selecting an Iceberg table
	Running time travel queries
	Updating an Iceberg partition
	Test driving Iceberg from Impala
	Hive demo data
	Test driving Iceberg from Hive
	Iceberg data types
	Iceberg table properties

