
Cloudera Runtime 7.2.17

Schema Registry Security
Date published: 2019-08-22
Date modified: 2023-06-27

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Schema Registry authorization through Ranger access policies.. 4
Predefined access policies for Schema Registry..4
Adding the user or group to a predefined access policy... 5
Creating a custom access policy.. 7

Schema Registry authentication through OAuth2 JWT tokens...8
JWT algorithms...10
Public key and secret storage...10
Authentication using OAuth2 with Kerberos...10
Schema Registry server configuration... 11
Configuring the Schema Registry client.. 13

Cloudera Runtime Schema Registry authorization through Ranger access policies

Schema Registry authorization through Ranger access
policies

User and group access to various Schema Registry functions is controlled through Apache Ranger.

Predefined access policies for Schema Registry allow the administrator to quickly add a user or user group to specify:

• Who can add or evolve schemas to a schema metadata.
• Who can view and edit schemas within a schema metadata.
• Who can upload the SerDes JAR files.

If a higher level of granularity is necessary, the administrator can create an access policy and add the user or user
group to this custom policy.

Related Information
Predefined access policies for Schema Registry

Adding the user or group to a predefined access policy

Creating a custom access policy

Predefined access policies for Schema Registry
Based on a user’s responsibilities, you can add users or user groups to one or more of the predefined access policies
for Schema Registry and you can specify if they have the permission to create, read, update, or delete access policies..

The following image shows the predefined access policies for Schema Registry:

The following table describes the predefined access policies for Schema Registry:

Access Policy Description

all - export-import Allows users to import and export schemas to or from the Schema
Registry service.

For example, a user can import a JSON file with schemas from a
Confluent Kafka topic to Cloudera Schema Registry.

all - serde Allows users to store metadata regarding the format of how data should
be read and how it should be written. Users can store JAR files for
serializers and deserializers and then map the SerDes to the schema.

4

Cloudera Runtime Schema Registry authorization through Ranger access policies

Access Policy Description

all - schema-group, schema-metadata Allows users to access the schema groups and schema metadata.

all - schema-group, schema-metadata, schema-branch Allows users to access the schema groups, schema metadata, and
schema branch.

all - registry-service Allows users to access the Schema Registry service. If a user is added
to this policy, the user can access all Schema Registry entities.

all - schema-group, schema-metadata, schema-branch, schema-version Allows users to access the schema groups, schema metadata, schema
branch, and schema version.

Related Information
Schema Registry authorization through Ranger access policies

Adding the user or group to a predefined access policy

Creating a custom access policy

Adding the user or group to a predefined access policy
When an authenticated user attempts to view, create, edit, or delete a Schema Registry entity, the system checks
whether the user has privileges to perform that action. These privileges are determined by the Ranger access policies
that a user is associated with.

Before you begin

For Ranger policies to work, you must have a user group named schemaregistry. If you use UNIX PAM, the sche
maregistry user group must be on the node that hosts Schema Registry.

About this task

Determine the permissions required by a user or user group, and accordingly add the user or group to the appropriate
predefined access policy.

Each predefined access policy controls access to one or more Schema Registry entities.

Procedure

1. From the Cloudera Manager home page, click the Ranger link.
The Ranger management page appears.

5

Cloudera Runtime Schema Registry authorization through Ranger access policies

2. Click Ranger Admin Web UI.

The Ranger Log In page appears.

3. Enter your user name and password to log in.
The Ranger Service Manager page appears.

The page is organized by service. Each cluster is listed under its respective service. For example, the Schema
Registry clusters in the environment are listed under Schema Registry.

4. Select a cluster from the Schema Registry section.
The List of Policies page appears.

5. Click the ID of a policy.
The Edit Policy page appears.

6

Cloudera Runtime Schema Registry authorization through Ranger access policies

6. In the Allow Conditions section, add the user or group to the respective Select User or Select Group field.

7. In the Policy Conditions field, enter the appropriate IP address.

8. From the Permissions field, select the appropriate permission.

9. Click Save.

Results
The user now has the rights according to the policy and the permissions you assigned to the user. These rights apply
to all objects in the entities unless you specified otherwise in the Policy Conditions field.
Related Information
Schema Registry authorization through Ranger access policies

Predefined access policies for Schema Registry

Creating a custom access policy

Creating a custom access policy
You can create a custom access policy for a specific Schema Registry entity, specify an access type, and add a user or
user group to the policy.

Before you begin
Determine and note down the following information:

• The schema registry entity that the user needs access to.
• Whether the user requires all objects in the entity or specific objects.
• Whether the user needs read, view, edit, or delete permissions to the entity.
• If there are any IP addresses to include or exclude from the user's access.

About this task

With a custom policy you can specify the Schema Registry entity and the type of access the user requires.

Procedure

1. Go to the Ranger List of Policies page.

7

Cloudera Runtime Schema Registry authentication through OAuth2 JWT tokens

2. Click Add New Policy.

The Create Policy page appears.

3. Enter a unique name for the policy.

4. Optionally, enter a keyword in the Policy Label field to aid in searching for a policy.

5. Select a Schema Registry entity. You can choose the Schema Registry service, schema group, or SerDe. Then,
perform one of the following tasks:

• If you want the user to access all the objects in the entity, enter *.
• If you want to specify the objects in the entity that a user can access, enter the name of the object in the text

field.

6. Optionally, enter a description.

7. In the Allow Conditions section, add the user or group to the respective Select User or Select Group field.

8. Optionally, from the Policy Conditions field, enter the appropriate IP address.

9. From the Permissions field, select the appropriate permission.

10. Click Save.

Results
The user now has the rights according to the policy and the permissions you assigned to the user.
Related Information
Schema Registry authorization through Ranger access policies

Predefined access policies for Schema Registry

Adding the user or group to a predefined access policy

Schema Registry authentication through OAuth2 JWT
tokens

You can use OAuth2 JSON Web Token (JWT) in Schema Registry for authentication. Authorization continues to be
implemented in Ranger; however, you can obtain the principal from a JWT token.

8

Cloudera Runtime Schema Registry authentication through OAuth2 JWT tokens

The flow for authenticating with OAuth2 tokens is as follows:

1. A client requests a token from the OAuth2 service.

During Schema Registry startup the application obtains the public keys needed for validating the incoming tokens.
2. The client sends the HTTP requests to Schema Registry and these requests contain the bearer token in the HTTP

header.
3. Schema Registry validates the token.

The following image shows the authentication flow with OAuth2 tokens:

Note: Schema Registry currently supports JWT tokens only. There is no support for opaque tokens. The
following is an example of a JWT token:

{
 "kid": "3",
 "alg": "HS256"
}

{
 "iss": "sender",
 "aud": "receiver",
 "exp": 1644492815,
 "jti": "5vgglGQCjC9_WZJMJg7mHQ",
 "iat": 1644492515,
 "sub": "abigel"
}

<signature>

The flow for authorization is as follows:

1. Once the token is validated, the principal is extracted from the JWT token. By default, the principal is stored in the
sub field.

2. The principal is passed to Ranger which performs the authorization.

9

Cloudera Runtime Schema Registry authentication through OAuth2 JWT tokens

JWT algorithms
Similarly to Kafka, Schema Registry also uses Jose4J for validating the JWT tokens and their signatures.

This library supports a range of signing algorithms: HS256, HS384, HS512, RS256, RS384, and RS512.

For more information, see Bitbucket jose4j Wiki.

Related Information
Bitbucket jose4j Wiki

Public key and secret storage
Learn about public key, private key, and secret in JSON Web Token (JWT). Also learn about JSON Web Key (JWK),
keystore, and property that Schema Registry supports for storing the public key or the secret.

When JWTs are signed with RSA, there is a private and public key pair. The private key is located on the OAuth2
server and is hidden from you. Schema Registry uses the public key for validating the signature of the JWT token.

When JWTs are signed with HMAC, there is a secret which is shared by all parties. The secret is used for signing the
token and also for verifying it.

Schema Registry supports the following ways to store the public key or the secret:

• JWK

JSON Web Key is a data structure that describes a key. When you have multiple keys collected in a set, that data
structure is named JWKS. A JWKS contains a collection of keys.

Usually, there is a public web service that exposes the JWKS. You can obtain the JWKS through an HTTP
request. Other transportation methods are possible, for example, the keys can be stored in a file or on a network
storage.

The keys are usually short lived (depending on the provider the validity period ranges from one day to one
week). For this reason, Schema Registry runs a thread every 5 minutes to refresh the keys. The interval can be
customized.

• Keystore

The keys can be stored in a Java keystore file. You need to ensure that Schema Registry has access to the file and
permission to read the key.

• Property

The public key or secret can be stored directly in Schema Registry. In this case, you enter the key in Cloudera
Manager and Schema Registry loads it during startup. This option is useful when the public key expires rarely and
you do not want to depend on an external JWK service for managing the keys.

Authentication using OAuth2 with Kerberos
It is possible to have both Kerberos and OAuth2 enabled at the same time for Schema Registry.

OAuth2 is added as yet another authentication layer to Schema Registry. It is possible to have both Kerberos and
OAuth2 enabled at the same time. In this scenario, if either one of them succeeds in authenticating the client, the
client is given a pass.

This setup can be useful for cases when you have different services communicating with Schema Registry and some
of them use Kerberos while others rely on OAuth2.

10

https://bitbucket.org/b_c/jose4j/wiki/Home

Cloudera Runtime Schema Registry authentication through OAuth2 JWT tokens

Schema Registry server configuration
Learn how to configure general settings for Schema Registry server. Also learn about the extra parameters which you
can set when storage type is JWK, keystore, or property.

General settings

Property Data type Description

schema.registry.oauth.enabled Boolean Select this option to enable OAuth2
authentication.

schema.registry.oauth.key.store.type Enum Select the type of the key storage where the
public key is read from. Possible values are:
property, keystore, jwk.

Depending on the chosen value, additional
configuration might be necessary. These are
detailed in the following sections.

schema.registry.oauth.jwt.principal.claim.name String The JWT token needs to contain the principal
which is used during Ranger authorization.
By default, it is assumed that the sub claim
contains the principal, but this can be modified
with this parameter.

schema.registry.oauth.jwt.expected.audience String The JWT token can optionally contain an
audience aud claim. When this claim is
present, the same audience value needs to
be expected on the server side, otherwise the
token is considered invalid.

schema.registry.oauth.jwt.expected.issuer String The JWT token can optionally contain an
issuer iss claim. You can configure Schema
Registry to only accept tokens issued by a
specific issuer.

schema.registry.oauth.clock.skew Integer The clock of the server issuing the token might
not be in sync with the clock where Schema
Registry is running. You can adjust this value
to tolerate a certain difference between the two
clocks (in seconds).

JWK configuration settings

When storage type is JSON Web Key (JWK), you can also apply the following parameters.

Property Data type Description

schema.registry.oauth.jwks.url String URL to the server issuing the JWK keys. This
can also be a local file if the URL starts with
file://.

schema.registry.oauth.jwks.refresh.ms Long Refresh interval for reading the keys from the
JWK server. Default value is 30000 ms (30
seconds).

The following parameters are optional. When the keys are downloaded from a remote server, you might need special
configuration for accessing the server.

Property Data type Description

schema.registry.oauth.jwks.httpClient.basic.user String If the JWK server requires basic
authentication, then you can provide the
username.

11

Cloudera Runtime Schema Registry authentication through OAuth2 JWT tokens

Property Data type Description

schema.registry.oauth.jwks.httpClient.basic.passwordString If the JWK server requires basic
authentication, then you can provide the
password.

schema.registry.oauth.jwks.httpClient.keyStorePathString If a key is required for accessing the JWK
server, then you can provide the keystore path.

schema.registry.oauth.jwks.httpClient.keyStoreTypeString Schema Registry keystore type of HTTP client
used for JWK OAuth2. This can be required
when keystore type is jwk.

schema.registry.oauth.jwks.httpClient.keyPasswordString Schema Registry key password of HTTP client
used for JWK OAuth2. This can be required
when keystore type is jwk.

schema.registry.oauth.jwks.httpClient.keyStorePasswordString Schema Registry keystore password of HTTP
client used for JWK OAuth2. This can be
required when keystore type is jwk.

schema.registry.oauth.jwks.httpClient.keyStoreProviderString Schema Registry keystore provider of HTTP
client used for JWK OAuth2. This can be
required when keystore type is jwk.

schema.registry.oauth.jwks.httpClient.keyManagerFactoryAlgorithmString Schema Registry algorithm of
KeyManagerFactory for HTTP client used
for JWK OAuth2. This can be required when
keystore type is jwk.

schema.registry.oauth.jwks.httpClient.keyManagerFactoryProviderString Schema Registry KeyManagerFactory
provider for HTTP client used for JWK
OAuth2. This can be required when keystore
type is jwk.

schema.registry.oauth.jwks.httpClient.trustStorePathString You can add the certificate of the JWK server
to a truststore.

schema.registry.oauth.jwks.httpClient.trustStoreTypeString Schema Registry truststore type of HTTP
client used for JWK OAuth2. This can be
required when keystore type is jwk.

schema.registry.oauth.jwks.httpClient.trustStorePasswordString Schema Registry truststore password of HTTP
client used for JWK OAuth2. This can be
required when keystore type is jwk.

schema.registry.oauth.jwks.httpClient.trustStoreProviderString Schema Registry truststore provider of HTTP
client used for JWK OAuth2. This can be
required when keystore type is jwk.

schema.registry.oauth.jwks.httpClient.trustManagerFactoryAlgorithmString Schema Registry TrustManagerFactory
algorithm for HTTP client used for JWK
OAuth2. This can be required when keystore
type is jwk.

schema.registry.oauth.jwks.httpClient.trustManagerFactoryProviderString Schema Registry TrustManagerFactory
provider for HTTP client used for JWK
OAuth2. This can be required when keystore
type is jwk.

schema.registry.oauth.jwks.httpClient.protocol String HTTPS security protocol. By default, it is
TLS.

Keystore configuration settings

When storage type is keystore, you can also apply the following parameters.

Property Data type Description

schema.registry.oauth.keystore.public.key.keystoreString Path to the keystore file. Ensure the file is
readable by Schema Registry.

schema.registry.oauth.keystore.public.key.keystore.aliasString The alias of the key within the keystore.

12

Cloudera Runtime Schema Registry authentication through OAuth2 JWT tokens

Property Data type Description

schema.registry.oauth.keystore.public.key.keystore.passwordString Password for reading the keystore.

Property configuration settings

When storage type is property, you can also apply the following parameters.

Property Data type Description

schema.registry.oauth.property.public.key.propertyString The public key or the secret.

schema.registry.oauth.property.key.algorithm Enum The algorithm of the key. The values are:
RS256, HS256.

Configuring the Schema Registry client
Learn how to configure the Schema Registry client to access the server.

When running together with Kafka, the existing parameters still apply.

The client first sends a request to the OAuth2 auth server and requests a token. Configure the settings required to
access the server.

Property Data type Description

schema.registry.auth.type String It needs to be set to oauth2.

schema.registry.oauth.server.url String URL of the server issuing the tokens.

schema.registry.oauth.client.id String ID of the client.

schema.registry.oauth.secret String Secret.

schema.registry.oauth.scope String Scope (optional).

schema.registry.oauth.request.method String HTTP request method. By default, it is post.

13

	Contents
	Schema Registry authorization through Ranger access policies
	Predefined access policies for Schema Registry
	Adding the user or group to a predefined access policy
	Creating a custom access policy

	Schema Registry authentication through OAuth2 JWT tokens
	JWT algorithms
	Public key and secret storage
	Authentication using OAuth2 with Kerberos
	Schema Registry server configuration
	Configuring the Schema Registry client

