
Cloudera Runtime 7.3.1

Upgrading Apache Spark
Date published: 2020-07-28
Date modified: 2024-12-10

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1.........................4
Upgrading from 7.2.18... 5

Upgrading Apache Spark 2.4.8 on 7.2.18 SP2 to Spark 3 on 7.3.1.. 5
Upgrading Apach Spark 2.4.8 (with 3.4.1 bundled) on 7.2.18 SP2 to Spark 3 on 7.3.1......................... 7
Upgrading Apache Spark 3.4.1 (bundled) on 7.2.18 SP2 to Spark 3 on 7.3.1.. 9

Upgrading from 7.2.17... 10
Upgrading Apache Spark 2.4.8 on 7.2.17 to Spark 3 on 7.3.1..10
Upgrading Apache Spark 2.4.8 on 7.2.17 to Spark 3 on 7.3.1..12
Upgrading Apache Spark 2.4.8 (with 3.3.2 bundled) on 7.2.17 to Spark 3 on 7.3.1............................. 12
Upgrading Apache Spark 2.4.8 (with 3.3.2 bundled) on 7.2.17 to Spark 3 on 7.3.1............................. 15
Upgrading Apache Spark 3.3.2 (bundled) on 7.2.17 to Spark 3 on 7.3.1..15

Migrating Spark applications..16
Java versions... 17
Scala versions... 17
Python versions...17
Spark commands...18
Spark connectors...18
Logging... 18
Third-party libraries.. 18
Spark behavior changes..18
Apache Spark Migration guides...19
Spark 2 to Spark 3 workload refactoring...19
Unsupported features.. 22
Post-migration checklist..22
Benchmark testing.. 23
Troubleshooting...23

Cloudera Runtime Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1

Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud
7.3.1

Upgrading Apache Spark from version 2 to version 3 in Cloudera Public Cloud is a process that involves:

1. Intermediate in-place cluster upgrade tasks, due to different support for Spark 3 versions of connectors in
Cloudera versions.

2. Intermediate Spark application migration tasks, due to minor or maintenance Spark version changes.
3. Sidecar migration tasks for Data Hub clusters, because adjusting existing Data Hub clusters is not possible, but in-

place 7.3.1 upgrade can only happen on clusters where Spark 2 is no longer present.
4. Application migration from Spark 2 to Spark 3, due to major Spark version changes.
5. Post-application migration tasks.
6. In-place cluster upgrade tasks.

Important: Cluster upgrade to version 7.3.1 is only allowed if all Spark 2 applications have been
migrated to Spark 3 and tested in the source cluster.

7. Spark application migration tasks, due to minor or maintenance Spark version changes.

Warning:

Upgrading to Cloudera Runtime 7.3.1 is only supported for the following service packs:

• 7.2.17.200
• 7.2.17.300
• 7.2.17.400
• 7.2.17.500
• 7.2.18.0
• 7.2.18.100
• 7.2.18.200

If your Cloudera Runtime version is not in the list of supported versions for a direct upgrade, it is possible
that you can still upgrade to one of the above versions first, and then upgrade to Cloudera Runtime 7.3.1.

For more information on upgrading Cloudera Runtime 7.2.17.x and the supported upgrade paths, see
Upgrading to Cloudera Runtime 7.3.1

Note: The application migration tasks (see Migrating Spark Applications) are done on your application
codebase.

Note: Depending on your environment and Spark applications, some of these steps are not necessary.

This table below provides links to the upgrade guides based on the version of Cloudera Public Cloud you're using,
and the source versions of Spark in your environment.

Important:

If you're using Spark 2 with any of the following connectors, follow the upgrade steps in the relevant
Upgrade guide (with connectors) pages:

• Oozie
• Solr
• Phoenix
• Hive Warehouse Connector
• Spark Schema Registry

4

https://docs.cloudera.com/runtime/7.3.1/cdp-upgrade-advisor/topics/mc-upgrading_to_runtime_7_3_1.html

Cloudera Runtime Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1

Each upgrade guide contain all steps needed to upgrade Spark 2 to Spark 3 and perform the upgrade to Cloudera
Public Cloud version 7.3.1.

Source cluster version Source cluster Spark 2
version

Source cluster Spark 3
version

Data Hub template

2.4.8 None Upgrade guide

2.4.8 3.4.1 (bundled)

Data Hub was created with
a custom template. Upgrade guide

7.2.18 SP2

None 3.4.1 (bundled)

Data Hub was created
with the 7.2.18 - Data
Engineering: Apache
Spark3, Apache Hive,
Apache Oozie or a custom
template.

Upgrade guide

Upgrade guide

2.4.8 None

Data Hub was created
with the 7.2.17 - Data
Engineering: Apache
Spark, Apache Hive,
Apache Oozie or a custom
template.

Upgrade (with connectors)
guide

Upgrade guide

2.4.8 3.3.2 (bundled)
Data Hub was created with
a custom template. Upgrade guide (with

connectors)

7.2.17

None 3.3.2 (bundled)

Data Hub was created
with the 7.2.17 - Data
Engineering: Apache
Spark3" or a custom
template.

Upgrade guide

Related Information
Migrating Spark applications

Upgrading from 7.2.18

Upgrading Apache Spark 2.4.8 on 7.2.18 SP2 to Spark 3 on 7.3.1

The following steps will help you upgrading from Apache Spark 2.4.8 on Cloudera Public Cloud 7.2.18 SP2 to Spark
3.4.1 on 7.3.1.

Source cluster
version

Source cluster Spark
2 version

Source cluster Spark
3 version

Target cluster
version

Target cluster Spark
3 version

Spark 2 used with

connectors1

7.2.18 SP2 2.4.8 none 7.3.1 3.4.1 no

Sidecar migration of Data Hub clusters

Procedure

Sidecar migration tasks for Data Hub clusters

The new 7.2.18 Data Hub cluster needs to use Spark 3 and Livy 3 instead of Spark 2 and Livy 2.

Depending on the template you used for your existing Data Hub clusters, a new custom template might be needed that
contains Spark 3 instead of Spark 2. Alternatively, the built-in 7.2.18 - Data Engineering: Apache Spark3, Apache
Hive, Apache Oozie template can be used, as it contains Spark 3 only.

1 Oozie, Solr, Phoenix, Hive Warehouse Connector, Spark Schema Registry

5

https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/ug_spark_7218-248.html
https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/ug_spark_7218-248-341.html
https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/ug_spark_7218-341.html
https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/ug_spark_7217-248.html
https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/ug_spark_7217-248-c.html
https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/ug_spark_7217-248-c.html
https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/ug_spark_7217-248-332.html
https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/ug_spark_7217-248-332-c.html
https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/ug_spark_7217-248-332-c.html
https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/ug_spark_7217-332.html
https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/spark-application-migration.html

Cloudera Runtime Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1

1. Check the current services in your template, and add the built-in 7.2.18 - Data Engineering: Apache Spark3,
Apache Hive, Apache Oozie template.

2. If the built-in 7.2.18 - Data Engineering: Apache Spark3, Apache Hive, Apache Oozie template doesn't work, you
can create a custom template. Replace all Spark 2 and Livy 2 references with Spark 3 and Livy 3, respectively.

3. Add a new Spark 3-based 7.2.18 Data Hub cluster to the environment, using your custom template or the built-in
7.2.18 - Data Engineering: Apache Spark3, Apache Hive, Apache Oozie template.

4. Migrate all non-spark workloads from the old Data Hub cluster to the new cluster.

Application migration tasks (Spark 2 to 3)

Procedure

1. Follow the Spark application migration documentation to migrate your Apache Spark Applications from version
2.4.8 to 3.4.1

a) Check the supported Java versions.
b) Check the supported Scala version.
c) Check the supported Python versions.
d) Account for changed or versioned Spark commands in your code. (spark-submit, pyspark, etc.)
e) Check supported versions for Spark connectors.
f) Check the logging library used in your code.
g) Check the compatibility of 3rd-party libraries used in your code.
h) Check Spark behavior changes and refactor your code.

2. Migrate all Spark 2 applications in the old Data Hub cluster to Spark 3 applications in the new cluster.

Post-application migration tasks

Procedure

1. Move Spark 2 event logs to the Spark 3 event logs directory.

2. Drop the old Data Hub cluster.

In-place cluster upgrade

Before you begin

Important: Cluster upgrade to version 7.3.1 is only allowed if all Spark 2 applications have been migrated to
Spark 3 and tested in the source cluster.

Procedure

1. Upgrade the Data Lake cluster to 7.3.1

a) Check the support matrix for Data Hub upgrades.
b) Stop all Data Hubs attached to the environment.
c) From the Management Console, click Data LakesEnvironment Name, scroll to the bottom of the Data Lake

details page, and click the Upgrade tab.
d) Click the Target Cloudera Runtime Version drop-down menu to see any available upgrades.
e) If you want to skip the automatic backup that is taken before the upgrade, uncheck the Automatic backup box.
f) Click Validate and Prepare to check for any configuration issues and begin the Cloudera Runtime parcel

download and distribution.
g) Click Upgrade to initiate the upgrade.
h) Click the Event History tab to monitor the upgrade process and verify that it completes successfully.

For more information, see Data Lake upgrade.

6

https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/spark-application-migration.html
https://docs.cloudera.com/management-console/cloud/data-lakes/topics/mc-data-lake-upgrading.html

Cloudera Runtime Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1

2. Upgrade the new Data Hub cluster to 7.3.1

a) Check the support matrix for Data Hub upgrades.
b) Start the cluster.
c) Check the current version of Cloudera Runtime.
d) If your cluster uses Streams Replication Manager, export or migrate aggregated metrics.
e) If you use autoscaling, disable autoscaling on the cluster.
f) Upgrade the cluster.
g) Monitor the upgrade progress using the Data Hub Event History tab.
h) When the upgrade is complete, verify the new version.
i) If you disabled autoscaling on the cluster, you can re-enable it after upgrade.

For more information, see Upgrading Data Hubs.

Final steps

Procedure

After the upgrade and application migration are complete:

1. Check the status of your Data Lakes, Data Hubs, and clusters.

2. Perform benchmark testing on your applications. See Spark Application Migration.

Upgrading Apach Spark 2.4.8 (with 3.4.1 bundled) on 7.2.18 SP2 to Spark 3 on 7.3.1

The following steps will help you upgrading from Apache Spark 2.4.8 (with 3.4.1 bundled) on Cloudera Public Cloud
7.2.18 SP2 to Spark 3.4.1 on 7.3.1.

Source cluster
version

Source cluster Spark
2 version

Source cluster Spark
3 version

Target cluster
version

Target cluster Spark
3 version

Spark 2 used with

connectors2

7.2.18 SP2 2.4.8 3.4.1 (bundled) 7.3.1 3.4.1 no

Sidecar migration of Data Hub clusters

Procedure

Sidecar migration tasks for Data Hub clusters

The new 7.2.18 Data Hub cluster needs to use Spark 3 and Livy 3 instead of Spark 2 and Livy 2.

Depending on the template you used for your existing Data Hub clusters, a new custom template might be needed that
contains Spark 3 instead of Spark 2. Alternatively, the built-in 7.2.18 - Data Engineering: Apache Spark3, Apache
Hive, Apache Oozie template can be used, as it contains Spark 3 only.

1. Check the current services in your template, and add the built-in 7.2.18 - Data Engineering: Apache Spark3,
Apache Hive, Apache Oozie template.

2. If the built-in 7.2.18 - Data Engineering: Apache Spark3, Apache Hive, Apache Oozie template doesn't work, you
can create a custom template. Replace all Spark 2 and Livy 2 references with Spark 3 and Livy 3, respectively.

3. Add a new Spark 3-based 7.2.18 Data Hub cluster to the environment, using your custom template or the built-in
7.2.18 - Data Engineering: Apache Spark3, Apache Hive, Apache Oozie template.

4. Migrate all non-spark workloads from the old Data Hub cluster to the new cluster.

Application migration tasks (Spark 2 to 3)

2 Oozie, Solr, Phoenix, Hive Warehouse Connector, Spark Schema Registry

7

https://docs.cloudera.com/data-hub/cloud/manage-clusters/topics/dh-upgrade.html
https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/spark-application-migration.html

Cloudera Runtime Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1

Procedure

1. Follow the Spark application migration documentation to migrate your Apache Spark Applications from version
2.4.8 to 3.4.1

a) Check the supported Java versions.
b) Check the supported Scala version.
c) Check the supported Python versions.
d) Account for changed or versioned Spark commands in your code. (spark-submit, pyspark, etc.)
e) Check supported versions for Spark connectors.
f) Check the logging library used in your code.
g) Check the compatibility of 3rd-party libraries used in your code.
h) Check Spark behavior changes and refactor your code.

2. Migrate all Spark 2 applications in the old Data Hub cluster to Spark 3 applications in the new cluster.

Post-application migration tasks

Procedure

1. Move Spark 2 event logs to the Spark 3 event logs directory.

2. Drop the old Data Hub cluster.

In-place cluster upgrade

Before you begin

Important: Cluster upgrade to version 7.3.1 is only allowed if all Spark 2 applications have been migrated to
Spark 3 and tested in the source cluster.

Procedure

1. Upgrade the Data Lake cluster to 7.3.1

a) Check the support matrix for Data Hub upgrades.
b) Stop all Data Hubs attached to the environment.
c) From the Management Console, click Data LakesEnvironment Name, scroll to the bottom of the Data Lake

details page, and click the Upgrade tab.
d) Click the Target Cloudera Runtime Version drop-down menu to see any available upgrades.
e) If you want to skip the automatic backup that is taken before the upgrade, uncheck the Automatic backup box.
f) Click Validate and Prepare to check for any configuration issues and begin the Cloudera Runtime parcel

download and distribution.
g) Click Upgrade to initiate the upgrade.
h) Click the Event History tab to monitor the upgrade process and verify that it completes successfully.

For more information, see Data Lake upgrade.

8

https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/spark-application-migration.html
https://docs.cloudera.com/management-console/cloud/data-lakes/topics/mc-data-lake-upgrading.html

Cloudera Runtime Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1

2. Upgrade the new Data Hub cluster to 7.3.1

a) Check the support matrix for Data Hub upgrades.
b) Start the cluster.
c) Check the current version of Cloudera Runtime.
d) If your cluster uses Streams Replication Manager, export or migrate aggregated metrics.
e) If you use autoscaling, disable autoscaling on the cluster.
f) Upgrade the cluster.
g) Monitor the upgrade progress using the Data Hub Event History tab.
h) When the upgrade is complete, verify the new version.
i) If you disabled autoscaling on the cluster, you can re-enable it after upgrade.

For more information, see Upgrading Data Hubs.

Final steps

Procedure

After the upgrade and application migration are complete:

1. Check the status of your Data Lakes, Data Hubs, and clusters.

2. Perform benchmark testing on your applications. See Spark Application Migration.

Upgrading Apache Spark 3.4.1 (bundled) on 7.2.18 SP2 to Spark 3 on 7.3.1

The following steps will help you upgrading from Apache Spark 2.4.8 (with 3.4.1 bundled) on Cloudera Public Cloud
7.2.18 SP2 to Spark 3.4.1 on 7.3.1.

Source cluster
version

Source cluster Spark
2 version

Source cluster Spark
3 version

Target cluster
version

Target cluster Spark
3 version

Spark 2 used with

connectors3

7.2.18 SP2 none 3.4.1 (bundled) 7.3.1 3.4.1 no

In-place cluster upgrade

Procedure

1. Upgrade the Data Lake cluster to 7.3.1

a) Check the support matrix for Data Hub upgrades.
b) Stop all Data Hubs attached to the environment.
c) From the Management Console, click Data LakesEnvironment Name, scroll to the bottom of the Data Lake

details page, and click the Upgrade tab.
d) Click the Target Cloudera Runtime Version drop-down menu to see any available upgrades.
e) If you want to skip the automatic backup that is taken before the upgrade, uncheck the Automatic backup box.
f) Click Validate and Prepare to check for any configuration issues and begin the Cloudera Runtime parcel

download and distribution.
g) Click Upgrade to initiate the upgrade.
h) Click the Event History tab to monitor the upgrade process and verify that it completes successfully.

For more information, see Data Lake upgrade.

3 Oozie, Solr, Phoenix, Hive Warehouse Connector, Spark Schema Registry

9

https://docs.cloudera.com/data-hub/cloud/manage-clusters/topics/dh-upgrade.html
https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/spark-application-migration.html
https://docs.cloudera.com/management-console/cloud/data-lakes/topics/mc-data-lake-upgrading.html

Cloudera Runtime Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1

2. Upgrade the new Data Hub cluster to 7.3.1

a) Check the support matrix for Data Hub upgrades.
b) Start the cluster.
c) Check the current version of Cloudera Runtime.
d) If your cluster uses Streams Replication Manager, export or migrate aggregated metrics.
e) If you use autoscaling, disable autoscaling on the cluster.
f) Upgrade the cluster.
g) Monitor the upgrade progress using the Data Hub Event History tab.
h) When the upgrade is complete, verify the new version.
i) If you disabled autoscaling on the cluster, you can re-enable it after upgrade.

For more information, see Upgrading Data Hubs.

Final steps

Procedure

After the upgrade and application migration are complete:

1. Check the status of your Data Lakes, Data Hubs, and clusters.

2. Perform benchmark testing on your applications. See Spark Application Migration.

Upgrading from 7.2.17

Upgrading Apache Spark 2.4.8 on 7.2.17 to Spark 3 on 7.3.1

The following steps will help you upgrading from Apache Spark 2.4.8 on Cloudera Public Cloud 7.2.17 to Spark
3.4.1 on 7.3.1.

Source cluster
version

Source cluster Spark
2 version

Source cluster Spark
3 version

Target cluster
version

Target cluster Spark
3 version

Spark 2 used with

connectors4

7.2.17 2.4.8 none 7.3.1 3.4.1 no

Intermediate in-place cluster upgrade

Procedure

Upgrade the cluster OS from Centos 7 to RedHat 8.

Sidecar migration of Data Hub clusters

Procedure

Sidecar migration tasks for Data Hub clusters

The new 7.2.17 Data Hub cluster needs to use Spark 3 and Livy 3 instead of Spark 2 and Livy 2.

Depending on the template you used for your existing Data Hub clusters, a new custom template might be needed that
contains Spark 3 instead of Spark 2. Alternatively, the built-in 7.2.17 - Data Engineering: Apache Spark3 template
can be used, as it contains Spark 3 only.

1. Check the current services in your template, and add the built-in 7.2.17 - Data Engineering: Apache Spark3
template.

2. If the built-in 7.2.17 - Data Engineering: Apache Spark3 template doesn't work, you can create a custom template.
Replace Spark 2 and Livy 2 references with Spark 3 and Livy 3, respectively..

4 Oozie, Solr, Phoenix, Hive Warehouse Connector, Spark Schema Registry

10

https://docs.cloudera.com/data-hub/cloud/manage-clusters/topics/dh-upgrade.html
https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/spark-application-migration.html

Cloudera Runtime Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1

3. Add a new Spark 3-based 7.2.17 Data Hub cluster to the environment, using your custom template or the built-in
7.2.17 - Data Engineering: Apache Spark3 template.

4. Migrate all non-spark workloads from the old Data Hub cluster to the new cluster.

Application migration (Spark 2 to 3)

Procedure

1. Follow the Spark application migration documentation to migrate your Apache Spark Applications from version
2.4.8 to 3.3.2.

a) Check the supported Java versions.
b) Check the supported Scala version.
c) Check the supported Python versions.
d) Account for changed or versioned Spark commands in your code. (spark-submit, pyspark, etc.)
e) Check supported versions for Spark connectors.
f) Check the logging library used in your code.
g) Check the compatibility of 3rd-party libraries used in your code.
h) Check Spark behavior changes and refactor your code.

2. Migrate all Spark 2 applications in the old Data Hub cluster to Spark 3 applications in the new cluster.

Post-application migration tasks

Procedure

1. Move Spark 2 event logs to the Spark 3 event logs directory.

2. Drop the old Data Hub cluster.

In-place cluster upgrade

Before you begin

Important: Cluster upgrade to version 7.3.1 is only allowed if all Spark 2 applications have been migrated to
Spark 3 and tested in the source cluster.

Procedure

1. Upgrade the Data Lake cluster to 7.3.1

a) Check the support matrix for Data Hub upgrades.
b) Stop all Data Hubs attached to the environment.
c) From the Management Console, click Data LakesEnvironment Name, scroll to the bottom of the Data Lake

details page, and click the Upgrade tab.
d) Click the Target Cloudera Runtime Version drop-down menu to see any available upgrades.
e) If you want to skip the automatic backup that is taken before the upgrade, uncheck the Automatic backup box.
f) Click Validate and Prepare to check for any configuration issues and begin the Cloudera Runtime parcel

download and distribution.
g) Click Upgrade to initiate the upgrade.
h) Click the Event History tab to monitor the upgrade process and verify that it completes successfully.

For more information, see Data Lake upgrade.

11

https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/spark-application-migration.html
https://docs.cloudera.com/management-console/cloud/data-lakes/topics/mc-data-lake-upgrading.html

Cloudera Runtime Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1

2. Upgrade the new Data Hub cluster to 7.3.1

a) Check the support matrix for Data Hub upgrades.
b) Start the cluster.
c) Check the current version of Cloudera Runtime.
d) If your cluster uses Streams Replication Manager, export or migrate aggregated metrics.
e) If you use autoscaling, disable autoscaling on the cluster.
f) Upgrade the cluster.
g) Monitor the upgrade progress using the Data Hub Event History tab.
h) When the upgrade is complete, verify the new version.
i) If you disabled autoscaling on the cluster, you can re-enable it after upgrade.

For more information, see Upgrading Data Hubs.

Application migration tasks (Spark 3.x to 3.4.1)

Procedure

Follow the Spark application migration documentation to migrate your Apache Spark Applications from version 3.3.2
to 3.4.1

a) Refactor your Spark application code.

Final steps

Procedure

After the upgrade and application migration are complete:

1. Check the status of your Data Lakes, Data Hubs, and clusters.

2. Perform benchmark testing on your applications. See Spark Application Migration.

Upgrading Apache Spark 2.4.8 on 7.2.17 to Spark 3 on 7.3.1

The following steps will help you upgrading from Apache Spark 2.4.8 on Cloudera Public Cloud 7.2.17 to Spark
3.4.1 on 7.3.1.

Source cluster
version

Source cluster Spark
2 version

Source cluster Spark
3 version

Target cluster
version

Target cluster Spark
3 version

Spark 2 used with

connectors5

7.2.17 2.4.8 none 7.3.1 3.4.1 yes

Intermediate in-place cluster upgrade

Procedure

1. Upgrade the cluster OS from Centos 7 to RedHat 8.

2. Upgrade your cluster to Cloudera Public Cloud 7.2.18 SP2.

a) Identify cluster version details.
b) Identify your upgrade path.
c) Review the prerequisites
d) High-level upgrade steps.

For more information on upgrading your cluster to 7.2.18 SP2, see:

• Upgrading to Runtime 7.2.18

Upgrading Apache Spark 2.4.8 (with 3.3.2 bundled) on 7.2.17 to Spark 3 on 7.3.1

5 Oozie, Solr, Phoenix, Hive Warehouse Connector, Spark Schema Registry

12

https://docs.cloudera.com/data-hub/cloud/manage-clusters/topics/dh-upgrade.html
https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/spark-application-migration.html
https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/spark-application-migration.html
https://docs.cloudera.com/cdp-public-cloud/cloud/cdp-upgrade-advisor/topics/mc-upgrading_to_runtime_7_2_18.html

Cloudera Runtime Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1

The following steps will help you upgrading from Apache Spark 2.4.8 (with 3.3.2 bundled) on Cloudera Public Cloud
7.2.17 to Spark 3.4.1 on 7.3.1.

Source cluster
version

Source cluster Spark
2 version

Source cluster Spark
3 version

Target cluster
version

Target cluster Spark
3 version

Spark 2 used with

connectors6

7.2.17 2.4.8 3.3.2 (bundled) 7.3.1 3.4.1 no

Intermediate in-place cluster upgrade

Procedure

Upgrade the cluster OS from Centos 7 to RedHat 8.

Intermediate application migration tasks

Procedure

Follow the Spark application migration documentation to migrate your Apache Spark Applications from version 3.3.2
to 3.4.1

a) Refactor your Spark application code.

Sidecar migration of Data Hub clusters

Procedure

The new 7.2.17 Data Hub cluster needs to use Spark 3 and Livy 3 instead of Spark 2 and Livy 2.

Depending on the template you used for your existing Data Hub clusters, a new custom template might be needed that
contains Spark 3 instead of Spark 2. Alternatively, the built-in 7.2.17 - Data Engineering: Apache Spark3 template
can be used, as it contains Spark 3 only.

1. Check the current services in your template, and add the built-in 7.2.17 - Data Engineering: Apache Spark3
template.

2. If the built-in 7.2.17 - Data Engineering: Apache Spark3 template doesn't work, you can create a custom template.
Replace Spark 2 and Livy 2 references with Spark 3 and Livy 3, respectively..

3. Add a new Spark 3-based 7.2.17 Data Hub cluster to the environment, using your custom template or the built-in
7.2.17 - Data Engineering: Apache Spark3 template.

4. Migrate all non-spark workloads from the old Data Hub cluster to the new cluster.

Application migration tasks (Spark 2 to 3)

Procedure

1. Follow the Spark application migration documentation to migrate your Apache Spark Applications from version
2.4.8 to 3.3.2.

a) Check the supported Java versions.
b) Check the supported Scala version.
c) Check the supported Python versions.
d) Account for changed or versioned Spark commands in your code. (spark-submit, pyspark, etc.)
e) Check supported versions for Spark connectors.
f) Check the logging library used in your code.
g) Check the compatibility of 3rd-party libraries used in your code.
h) Check Spark behavior changes and refactor your code.

2. Migrate all Spark 2 applications in the old Data Hub cluster to Spark 3 applications in the new cluster.

6 Oozie, Solr, Phoenix, Hive Warehouse Connector, Spark Schema Registry

13

https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/spark-application-migration.html
https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/spark-application-migration.html

Cloudera Runtime Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1

Post-application migration tasks

Procedure

1. Move Spark 2 event logs to the Spark 3 event logs directory.

2. Drop the old Data Hub cluster.

In-place cluster upgrade

Before you begin

Important: Cluster upgrade to version 7.3.1 is only allowed if all Spark 2 applications have been migrated to
Spark 3 and tested in the source cluster.

Procedure

1. Upgrade the Data Lake cluster to 7.3.1

a) Check the support matrix for Data Hub upgrades.
b) Stop all Data Hubs attached to the environment.
c) From the Management Console, click Data LakesEnvironment Name, scroll to the bottom of the Data Lake

details page, and click the Upgrade tab.
d) Click the Target Cloudera Runtime Version drop-down menu to see any available upgrades.
e) If you want to skip the automatic backup that is taken before the upgrade, uncheck the Automatic backup box.
f) Click Validate and Prepare to check for any configuration issues and begin the Cloudera Runtime parcel

download and distribution.
g) Click Upgrade to initiate the upgrade.
h) Click the Event History tab to monitor the upgrade process and verify that it completes successfully.

For more information, see Data Lake upgrade.

2. Upgrade the new Data Hub cluster to 7.3.1

a) Check the support matrix for Data Hub upgrades.
b) Start the cluster.
c) Check the current version of Cloudera Runtime.
d) If your cluster uses Streams Replication Manager, export or migrate aggregated metrics.
e) If you use autoscaling, disable autoscaling on the cluster.
f) Upgrade the cluster.
g) Monitor the upgrade progress using the Data Hub Event History tab.
h) When the upgrade is complete, verify the new version.
i) If you disabled autoscaling on the cluster, you can re-enable it after upgrade.

For more information, see Upgrading Data Hubs.

Application migration tasks (Spark 3.x to 3.4.1)

Procedure

Follow the Spark application migration documentation to migrate your Apache Spark Applications from version 3.3.2
to 3.4.1

a) Refactor your Spark application code.

Final steps

Procedure

After the upgrade and application migration are complete:

14

https://docs.cloudera.com/management-console/cloud/data-lakes/topics/mc-data-lake-upgrading.html
https://docs.cloudera.com/data-hub/cloud/manage-clusters/topics/dh-upgrade.html
https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/spark-application-migration.html

Cloudera Runtime Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1

1. Check the status of your Data Lakes, Data Hubs, and clusters.

2. Perform benchmark testing on your applications. See Spark Application Migration.

Upgrading Apache Spark 2.4.8 (with 3.3.2 bundled) on 7.2.17 to Spark 3 on 7.3.1

The following steps will help you upgrading from Apache Spark 2.4.8 (with 3.3.2 bundled) on Cloudera Public Cloud
7.2.17 to Spark 3.4.1 on 7.3.1.

Source cluster
version

Source cluster Spark
2 version

Source cluster Spark
3 version

Target cluster
version

Target cluster Spark
3 version

Spark 2 used with

connectors7

7.2.17 2.4.8 3.3.2 (bundled) 7.3.1 3.4.1 yes

Intermediate in-place cluster upgrade

Procedure

1. Upgrade the cluster OS from Centos 7 to RedHat 8.

2. Upgrade your cluster to Cloudera Public Cloud 7.2.18 SP2.

a) Identify cluster version details.
b) Identify your upgrade path.
c) Review the prerequisites
d) High-level upgrade steps.

For more information on upgrading your cluster to 7.2.18 SP2, see:

• Upgrading to Runtime 7.2.18

Upgrading Apache Spark 3.3.2 (bundled) on 7.2.17 to Spark 3 on 7.3.1

The following steps will help you upgrading from Apache Spark 3.3.2 (bundled) on Cloudera Public Cloud 7.2.17 to
Spark 3.4.1 on 7.3.1.

Source cluster
version

Source cluster Spark
2 version

Source cluster Spark
3 version

Target cluster
version

Target cluster Spark
3 version

Spark 2 used with

connectors8

7.2.17 none 3.3.2 (bundled) 7.3.1 3.4.1 no

In-place cluster upgrade

Procedure

1. Upgrade the cluster OS from Centos 7 to RedHat 8.

7 Oozie, Solr, Phoenix, Hive Warehouse Connector, Spark Schema Registry
8 Oozie, Solr, Phoenix, Hive Warehouse Connector, Spark Schema Registry

15

https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/spark-application-migration.html
https://docs.cloudera.com/cdp-public-cloud/cloud/cdp-upgrade-advisor/topics/mc-upgrading_to_runtime_7_2_18.html

Cloudera Runtime Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1

2. Upgrade the Data Lake cluster to 7.3.1

a) Check the support matrix for Data Hub upgrades.
b) Stop all Data Hubs attached to the environment.
c) From the Management Console, click Data LakesEnvironment Name, scroll to the bottom of the Data Lake

details page, and click the Upgrade tab.
d) Click the Target Cloudera Runtime Version drop-down menu to see any available upgrades.
e) If you want to skip the automatic backup that is taken before the upgrade, uncheck the Automatic backup box.
f) Click Validate and Prepare to check for any configuration issues and begin the Cloudera Runtime parcel

download and distribution.
g) Click Upgrade to initiate the upgrade.
h) Click the Event History tab to monitor the upgrade process and verify that it completes successfully.

For more information, see Data Lake upgrade.

3. Upgrade the new Data Hub cluster to 7.3.1

a) Check the support matrix for Data Hub upgrades.
b) Start the cluster.
c) Check the current version of Cloudera Runtime.
d) If your cluster uses Streams Replication Manager, export or migrate aggregated metrics.
e) If you use autoscaling, disable autoscaling on the cluster.
f) Upgrade the cluster.
g) Monitor the upgrade progress using the Data Hub Event History tab.
h) When the upgrade is complete, verify the new version.
i) If you disabled autoscaling on the cluster, you can re-enable it after upgrade.

For more information, see Upgrading Data Hubs.

Application migration tasks (Spark 3.x to 3.4.1)

Procedure

Follow the Spark application migration documentation to migrate your Apache Spark Applications from version 3.3.2
to 3.4.1

a) Refactor your Spark application code.

Final steps

Procedure

After the upgrade and application migration are complete:

1. Check the status of your Data Lakes, Data Hubs, and clusters.

2. Perform benchmark testing on your applications. See Spark Application Migration.

Migrating Spark applications
How to refactor Spark 2 workloads to Spark 3 during the upgrade/migration process due to the removal of Spark 2 in
Cloudera Public Cloud.

Introduction

The purpose of this document is to gather all information required to carry out a Spark application migration between
different versions.

The necessary set of steps largely depends on the source and target Spark versions, while major version changes
require considerable effort, minor and maintenance version changes mostly require only small config or no
adjustments.

16

https://docs.cloudera.com/management-console/cloud/data-lakes/topics/mc-data-lake-upgrading.html
https://docs.cloudera.com/data-hub/cloud/manage-clusters/topics/dh-upgrade.html
https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/spark-application-migration.html
https://docs.cloudera.com/runtime/7.3.1/spark-upgrade/topics/spark-application-migration.html

Cloudera Runtime Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1

Major version migration

Migration between major versions requires considerable effort and taking into account many factors.

This documentation focuses on migrating applications from Spark 2 to Spark 3, the two major versions currently
supported by Cloudera on different versions of Cloudera Public Cloud.

Java versions

Cloudera currently supports 3 major JDK versions in general:

• 8
• 11
• 17

Refer to Support Matrix for a list of supported versions of Java.

Important: For Java 11, setting -Dio.netty.tryReflectionSetAccessible=true is required for the Apache
Arrow library. This prevents the java.lang.UnsupportedOperationException: sun.misc.Unsafe or java.nio.Dir
ectByteBuffer.(long, int) not available error when Apache Arrow uses Netty internally.

Related Information
Cloudera Support Matrix

Scala versions

As Cloudera only supports only Spark 2 applications compiled with Scala 2.11, and Spark 3 applications with Scala
2.12, a major version change always require:

1. Spark Scala applications to be recompiled with Scala 2.12,
2. adjusting the dependencies to use Spark 3 version binaries provided by Cloudera in the public maven repository

and the Scala 2.12 version of third-party libraries.

Scala version changes can also require source code changes, for which see the Scala documentation.

Related Information
Cloudera public maven repositories

Cloudera Public Cloud | Using the Cloudera Runtime Maven repository

Scala documentation | Scala

Python versions

The supported versions of Python can change between Spark versions. Refer to the table below for details on the
supported Python versions for each Spark version, and follow the Python documentation to adjust your application.

Spark version Minimum supported Python version Maximum supported Python version

3.5.0 3.8 3.11

3.4.0 3.7 3.11

3.3.2 3.7 3.10

3.3.0 3.7 3.10

3.2.3 3.6 3.9

2.4.8 2.7/3.4 3.7

17

https://supportmatrix.cloudera.com/
https://repository.cloudera.com/repository/cloudera-repos/
https://docs.cloudera.com/runtime/7.3.1//release-notes/topics/cdpdc-maven-repo.html
https://docs.scala-lang.org/

Cloudera Runtime Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1

Related Information
Python documentation | Python

Spark commands

Cloudera supports multiple versions of Spark, depending on the version of Cloudera Public Cloud Data Hubs. The
general (unversioned) Apache Spark commands (spark-submit, pyspark, etc.) can point to different versions based on
the cluster version.

1. The original commands always point to the earliest available version of Spark in the distribution.

For example, the spark-submit command points to Spark 2 in version 7.2.18, but points to Spark 3 in version
7.3.1.

2. Other available Spark 3 versions can be used via versioned commands.

For example, the spark3-submit command points to Spark 3 in all versions.

Spark connectors

Spark 3 supports certain Spark connectors from certain versions.

If Spark 2 connectors are used, please take the connectors into account when choosing the minimum Cloduera Public
Cloud version you need to upgrade to when migrating a Spark application to a higher version.

• Hive Warehouse Connector for Spark 3 is supported from:

• Cloudera Public Cloud version 7.2.16
• HBase connector for Spark 3 is supported from:

• Cloudera Public Cloud version 7.2.12
• Phoenix connector for Spark 3 is supported from:

• Cloudera Public Cloud version 7.2.15
• Oozie for Spark 3 is supported from:

• Cloudera Public Cloud version 7.2.18
• Solr for Spark 3 is supported from:

• Cloudera Public Cloud version 7.2.18
• Spark Schema Registry is supported from:

• Cloudera Public Cloud version 7.2.18 SP2

Logging

Since Apache Spark 3 has transitioned from log4j to log4j2, you need to adjust the logging library and/or logging
configuration used in your application.

Important: The log4j and reload4j runtime libraries are no longer included in the classpath by default. They
have been replaced with the analogous log4j2 libraries.

Third-party libraries

When migrating between versions, ensure that your 3rd-party runtime dependencies align with the Spark versions.

Spark behavior changes

18

https://docs.python.org/3/

Cloudera Runtime Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1

As Apache Spark evolves, its behavior can change between major and minor versions, but many times legacy
configurations are added to support the old behavior.

As configurations can be defined at multiple levels, restoring the old behavior might require changing the application
itself, the application starting commands/scripts, and/or the default Spark configurations defined on the cluster.

Apache Spark Migration guides

The comprehensive guide of behavior changes between versions are available in the Apache Spark Migration Guides.

Always refer to the following documents to ensure that your Spark application remains compatible with newer Spark
versions:

• Migration Guide: Spark Core
• Migration Guide: SQL, Datasets and DataFrame
• Structured Streaming Programming Guide
• Machine Learning Library (MLlib) Guide
• Upgrading PySpark

Spark 2 to Spark 3 workload refactoring
The following list summarizes the most important behavior changes from Spark 2 to Spark 3, and gives examples on
how to refactor the Spark 2 application to become Spark 3 compatible.

The list is not exhaustive, refer to the Apache Spark Migration guides for the complete list.

Spark Core

Spark Core language/syntactic-level changes

Spark 2 Spark 3 Refactor action

TaskContext.isRunningLocally Deprecated method, removed.
Remove TaskContext.isRunningLocally if
used in code.

ShuffleBytesWritten and shuffleRecordsWr
itten (ShuffleWriteMetrics class)

bytesWritten and recordsWritten (org.apache.s
park.status.api.v1.OutputMetrics class)

Use bytesWritten and recordsWritten,
available in class org.apache.spark.status.api.
v1.OutputMetrics.

org.apache.spark Class Accumulator org.apache.spark.util.AccumulatorV2
Replace org.apache.spark.Accumulator with
org.apache.spark.util.AccumulatorV2.

For non-struct types, (e.g. int, string, array,
Dataset.groupByKey) results in a grouped
dataset with key attribute is wrongly named as
value.

For non-struct types (e.g. int, string, array,
Dataset.groupByKey) results to a grouped
dataset with key attribute is named as key.

Refactor the value attribute used in logic to
key. To preserve the old behavior, set spark.sq
l.legacy.dataset.nameNonStructGroupingKe
yAsValue to false.

Spark SQL

Spark SQL language/syntactic-level changes

Spark 2 Spark 3 Refactor action

Path option is overwritten if one path
parameter is passed to DataFrameReader.load
(), DataFrameWriter.save(), DataStreamRe
ader.load(), or DataStreamWriter.start().

Path option cannot coexist when the following
methods are called with path parameter(s):
DataFrameReader.load(), DataFrameWriter.
save(), DataStreamReader.load(), or DataStre
amWriter.start().

Remove the path option if it's the same as
the path parameter, or add it to the load()
parameter if you do want to read multiple
paths. To ignore this check, set spark.sql.le
gacy.pathOptionBehavior.enabled to true.

count(tblName.*) works.
An exception is thrown if count(tblName.*) is
used for getting the number of records in the
table.

Refactor the code to use count(*), or expand
the columns manually. (Example: count(co
l1, col2).) To restore the old behavior, set spar
k.sql.legacy.allowStarWithSingleTableIdentif
ierInCount to true.

19

https://spark.apache.org/docs/latest/core-migration-guide.html
https://spark.apache.org/docs/latest/sql-migration-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#migration-guide
https://spark.apache.org/docs/latest/ml-guide.html#migration-guide
https://spark.apache.org/docs/latest/api/python/migration_guide/pyspark_upgrade.html

Cloudera Runtime Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1

Spark SQL configuration-level changes

Spark 2 Spark 3 Refactor action

SET command works for SparkConf entries.
AnalysisException error is thrown if SET
command is used to modify the SparkConf
entries.

Remove SET commands for SparkConf entries
from your code. You can enter SparkConf
values at the cluster level by entering them in
the cluster’s Spark configuration and restarting
the cluster. To disable the check, set spark.sq
l.legacy.setCommandRejectsSparkCoreConfs
to false.

The second argument of date_add function
(num_days) can be a fraction, as it gets casted
to Int internally.

The second argument of date_add function
(num_days). If an integer is not provided, an
AnalysisException is thrown.

Make sure that in code always integer is
passed as the second argument to date_add and
date_subtract function.

Fractional and string types are allowed in perc
entile_approx third argument i.e. accuracy, as
it gets casted to Int internally.

percentile_approx third argument accuracy can
only be integer. If an integer is not provided,
an AnalysisException is thrown.

Make sure that in code always integer is
passed as the third argument to percentile_a
pprox function.

Hash expressions can be applied on MapType
elements.

Hash expressions are prohibited on MapType
elements.

If hash expression is applied on map type,
refactor the code to remove it, OR set spark.sq
l.legacy.allowHashOnMapType to true.

a map can be created with duplicate keys via
built-in functions like CreateMap, StringTo
Map, map_from_arrays etc.

Spark throws RuntimeException when
duplicated keys are found in Map. Users may
still read map values with duplicate keys
from data sources which do not enforce it (for
example, Parquet).

If duplicate keys are passed into built in
functions to create a map then try to remove
duplicate keys OR set spark.sql.mapKeyDedu
pPolicy to LAST_WIN, the map keys are
deduplicated.

the resulting date is adjusted in add_months,
when the original date is a last day of months.
For example, adding a month to 2019-02-28
results in 2019-03-31.

the add_months function does not adjust
the resulting date to a last day of month if
the original date is a last day of months. For
example, adding a month to 2019-02-28
results in 2019-03-28.

Adjust the code according to logic if required.

multiple from-to units is allowed in Interval
literal.

multiple from-to units Interval literal is not
allowed.

Remove multiple from-to units is allowed in
Interval literal. Adjust the code according to
logic if required.

Dataset query success if it contains ambiguous
column reference that is caused by self join.

Dataset query fails if it contains ambiguous
column reference that is caused by self join.
This is because Spark cannot resolve Dataset
column references that point to tables being
self joined, and df1("a") is exactly the same as
df2("a") in Spark.

Use aliases. For example: df2.as("purchases").
join(df1.as("devices"), col("devices.key1")
=== col("purchases.key2")).show()

invalid time zone ids are silently ignored and
replaced by GMT timezone.

invalid time zone ids are rejected, and Spark
throws java.time.DateTimeException.

rectify to correct Zone ID.

for Parsing and formatting of timestamp and
date strings, java.text.SimpleDateFormat is
used for timestamp/date string conversions,
and the supported patterns are described in
SimpleDateFormat.

DateTimeFormatter under the hood or Parsing
and formatting of timestamp and date strings.
Strict checking of Input is performed.

Refactor the code to correct pattern matching
for Input OR set spark.sql.legacy.timeParserP
olicy to LEGACY to restore the behavior,
OR set it to CORRECTED and treat it as an
invalid datetime string.

datetime pattern letter F is aligned to week of
month that represents the concept of the count
of weeks within the month where weeks start
on a fixed day-of-week.

datetime pattern letter F is aligned to day of
week in month that represents the concept of
the count of days within the period of a week
where the weeks are aligned to the start of the
month.

Refactor the code to accommodate new
behavior of pattern F.

SparkContext can be created in executors.
an exception will be thrown when creating
SparkContext in executor.

Refactor the code to remove the creation
of Spark context OR allow it by setting the
configuration spark.executor.allowSparkCon
text when creating SparkContext in executors.

TRANSFORM operator can support alias in
inputs.

TRANSFORM operator can’t support alias in
inputs.

Refactor the code to remove aliases from
Inputs.

20

Cloudera Runtime Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1

Spark 2 Spark 3 Refactor action

Loading and saving of timestamps from and to
Parquet files does not fail if the timestamps are
before 1900-01-01 00:00:00Z.

Loading and saving of timestamps from and to
Parquet files fails if the timestamps are before
1900-01-01 00:00:00Z.

Ensure that Input reads do not contain
timestamps before 1900-01-01 00:00:00Z.
Alternatively, set spark.sql.parquet.int96Rebas
eModeInWrite to CORRECTED to write the
datetime values as it is.

The Char(n) type handled inconsistently,
depending on whether the table is partitioned
or not.

In upstream Spark 3 the spark.sql.legacy.cha
rVarcharAsString config was introduced, but
does not solve all incompatibilities.

A new configuration spark.cloudera.legac
y.charVarcharLegacyPadding is introduced in
Cloudera to keep the full compatibility.

Note: Although this workaround
is available, using CHAR is
discouraged.

The Row field names are sorted alphabetically
when constructing with named arguments for
Python versions 3.6 and above.

The Row field names are no longer sorted
alphabetically.

To enable sorted fields by default as in Spark
2.4, set the environment variable PYSPARK_
ROW_FIELD_SORTING_ENABLED to true
for both the executors and the driver.

Spark SQL property-level changes

Spark 2 Spark 3 Refactor action

When there is nested CTE with a conflicting
name, outer CTE definitions take precedence.

When there is nested CTE with conflicting
name, Spark throws an AnalysisException by
default, and forces users to choose the specific
substitution order they wanted.

If the value of spark.sql.legacy.ctePrec
edencePolicy is set to CORRECTED
(recommended), inner CTE definitions take
precedence over outer definitions

.

If the value of spark.sql.legacy.ctePrec
edencePolicy is set to LEGACY, outer
CTE definitions take precedence over inner
definitions.

Set spark.sql.legacy.ctePrecedencePolicy to
CORRECTED.

Type conversions during table insertion are
allowed as long as they are valid Cast.

The type coercion is performed as per the
ANSI SQL standard.

Ensure the type coercion is performed as per
the ANSI SQL standard. Alternatively, set
spark.sql.storeAssignmentPolicy to Legacy to
restore previous behavior.

Spark storage location configuration changes

To execute workloads in Cloudera Public Cloud, modify the local data storage locations to cloud storage (for
example, from HDFS to S3 bucket).

The following example shows a sample workload, with the modified data location highlighted in bold.

21

Cloudera Runtime Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1

Spark 3.2 (HDFS) Spark 3.2 (S3)

spark-shell spark-shell

scala> spark.sql("CREATE TABLE IF NO
T EXISTS default.sales_spark_2(Regio
n string, Country string,Item_Type s
tring,Sales_Channel string,Order_Pri
ority string,Order_Date date,Order_I
D int,Ship_Date date,Units_sold stri
ng,Unit_Price string,Unit_cost strin
g,Total_revenue string,Total_Cost st
ring,Total_Profit string) row format
 delimited fields terminated by ','"
)
 scala> spark.sql("load data lo
cal inpath '/tmp/sales.csv' into tab
le default.sales_spark_3")

scala> spark.sql("select count(*) fr
om default.sales_spark_3").show()

scala> spark.sql("CREATE TABLE IF NO
T EXISTS default.sales_spark_2(Regio
n string, Country string,Item_Type s
tring,Sales_Channel string,Order_Pri
ority string,Order_Date date,Order_I
D int,Ship_Date date,Units_sold stri
ng,Unit_Price string,Unit_cost strin
g,Total_revenue string,Total_Cost st
ring,Total_Profit string) row format
 delimited fields terminated by ','"
)
 scala> spark.sql("load data
 inpath 's3://[*** BUCKET ***]/
sales.csv' into table default.sal
es_spark_3")

scala> spark.sql("select count(*) fr
om default.sales_spark_3").show()

Unsupported features

Unsupported Spark 3 features in Cloudera Public Cloud.

ZSTD compression in ORC data source

spark.sql.orc.compression.codec config doesn't accept zstd value.

Apache Jira:SPARK-33978

spark.hadoopRDD.ignoreEmptySplits

Causes issues in HBase TableInputFormat.

Apache Jira:SPARK-34809

LDAP authentication for livy-server

Open CVEs in Apache Directory Server dependency, LDAP based authentication is not supported
in Livy Server.

Apache Jira:LIVY-356

Thrift ldap authentication, based on ldapurl, basedn, domain

Open CVEs in Apache Directory Server dependency, LDAP based authentication is not supported
in Livy Thrift Server.

Apache Jira:LIVY-678

For more information, see Unsupported Apache Spark Features.

Related Information
Unsupported Apache Spark Features

Post-migration checklist

22

https://issues.apache.org/jira/browse/SPARK-33978
https://issues.apache.org/jira/browse/SPARK-34809
https://issues.apache.org/jira/browse/LIVY-356
https://issues.apache.org/jira/browse/LIVY-678
https://docs.cloudera.com/runtime/7.3.1/spark-overview/topics/spark-unsupported-features.html

Cloudera Runtime Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1

Benchmark testing

After all post-migration configurations are performed, perform benchmark testing on the new Apache Spark version.

Troubleshooting

Troubleshoot failed or slow performing workloads by analyzing the application event and driver logs, and fine tune
the workloads for better performance.

23

	Contents
	Upgrading Spark 2 to Spark 3 for Cloudera Public Cloud 7.3.1
	Upgrading from 7.2.18
	Upgrading Apache Spark 2.4.8 on 7.2.18 SP2 to Spark 3 on 7.3.1
	Sidecar migration of Data Hub clusters
	Application migration tasks (Spark 2 to 3)
	Post-application migration tasks
	In-place cluster upgrade
	Final steps

	Upgrading Apach Spark 2.4.8 (with 3.4.1 bundled) on 7.2.18 SP2 to Spark 3 on 7.3.1
	Sidecar migration of Data Hub clusters
	Application migration tasks (Spark 2 to 3)
	Post-application migration tasks
	In-place cluster upgrade
	Final steps

	Upgrading Apache Spark 3.4.1 (bundled) on 7.2.18 SP2 to Spark 3 on 7.3.1
	In-place cluster upgrade
	Final steps

	Upgrading from 7.2.17
	Upgrading Apache Spark 2.4.8 on 7.2.17 to Spark 3 on 7.3.1
	Intermediate in-place cluster upgrade
	Sidecar migration of Data Hub clusters
	Application migration (Spark 2 to 3)
	Post-application migration tasks
	In-place cluster upgrade
	Application migration tasks (Spark 3.x to 3.4.1)
	Final steps

	Upgrading Apache Spark 2.4.8 on 7.2.17 to Spark 3 on 7.3.1
	Intermediate in-place cluster upgrade

	Upgrading Apache Spark 2.4.8 (with 3.3.2 bundled) on 7.2.17 to Spark 3 on 7.3.1
	Intermediate in-place cluster upgrade
	Intermediate application migration tasks
	Sidecar migration of Data Hub clusters
	Application migration tasks (Spark 2 to 3)
	Post-application migration tasks
	In-place cluster upgrade
	Application migration tasks (Spark 3.x to 3.4.1)
	Final steps

	Upgrading Apache Spark 2.4.8 (with 3.3.2 bundled) on 7.2.17 to Spark 3 on 7.3.1
	Intermediate in-place cluster upgrade

	Upgrading Apache Spark 3.3.2 (bundled) on 7.2.17 to Spark 3 on 7.3.1
	In-place cluster upgrade
	Application migration tasks (Spark 3.x to 3.4.1)
	Final steps

	Migrating Spark applications
	Java versions
	Scala versions
	Python versions
	Spark commands
	Spark connectors
	Logging
	Third-party libraries
	Spark behavior changes
	Apache Spark Migration guides
	Spark 2 to Spark 3 workload refactoring
	Unsupported features
	Post-migration checklist
	Benchmark testing
	Troubleshooting

