
Cloudera Runtime 7.3.1

Streams Replication Manager Overview
Date published: 2019-08-22
Date modified: 2024-12-10

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Overview.. 4

Key Features..5

Main Use Cases...6

Streams Replication Manager use case architectures...7
Highly available Kafka architectures... 7
Cluster migration architectures...10

Streams Replication Manager Architecture.. 12
Streams Replication Manager Driver...12

Connect workers... 13
Connectors...15
Task architecture and load-balancing...17
Driver inter-node coordination... 19

Streams Replication Manager Service... 19
Remote Querying.. 21

Streams Replication Manager monitoring and metrics......................................24

Streams Replication Manager Service REST API.. 27

Streams Replication Manager replication flows and replication policies..........28

Streams Replication Manager remote topic discovery....................................... 32

Automatic group offset synchronization.. 33

Understanding co-located and external clusters..34

Understanding SRM properties, their configuration and hierarchy................. 37

Cloudera Runtime Overview

Overview

Get familiar with Streams Replication Manager and its components.

Streams Replication Manager (SRM) is an enterprise-grade replication solution that enables fault tolerant, scalable
and robust cross-cluster Kafka topic replication. SRM provides the ability to dynamically change configurations
and keeps the topic properties in sync across clusters at high performance. SRM also delivers custom extensions
that facilitate installation, management and monitoring making SRM a complete replication solution that is built for
mission critical workloads. Streams Replication Manager consists of two main components. The Stream Replication
Engine and the Stream Replication Management Services.

Figure 1: Streams Replication Manager Overview

Stream Replication Engine

The Stream Replication Engine is a next generation multi-cluster and cross-datacenter replication
engine for Kafka clusters.

Stream Replication Management Services

Stream Replication Management Services are services powered by open source Cloudera extensions
which utilize the capabilities of the Stream Replication Engine. These services provide:

• Easy installation
• Lifecycle management

4

Cloudera Runtime Key Features

• Management and monitoring of replication flows across clusters

The Stream Replication Management Services includes the following custom extensions:

Cloudera SRM Driver

The Cloudera SRM Driver is a small wrapper around the Stream Replication Engine that adds the
extensions provided by Cloudera. It provides the ability to spin up SRM clusters and has a metrics
reporter. The driver is managed by Cloudera Manager and is represented by the Streams Replication
Manager Driver role.

Cloudera SRM Client

The Cloudera SRM Client provides users with command line tools that enable replication
management for topics and consumer groups. The command line tool associated with the Cloudera
SRM Client is called srm-control.

Cloudera SRM Service

The Cloudera SRM Service consist of a REST API and a Kafka Streams application to aggregate
and expose cluster, topic and consumer group metrics. The service is managed by Cloudera
Manager and is represented by the Streams Replication Manager Service role.

Key Features

SRM has the following main features.

Remote topics

SRM replicates Kafka topics from source to target clusters. Remote topics are the replica topics located in target
clusters. Remote topics and their source topics are tracked internally by SRM. Additionally, remote topics are by
default prefixed with the name (alias) of the source cluster. The naming convention for remote topics is configurable
and is determined by the replication policy that is currently in use. For more information, see Replication flows and
replication policies.

Consistent semantics

Partitioning and record offsets are synchronized between replicated clusters to ensure consumers can migrate from
one cluster to another without losing data or skipping records.

Cross cluster configuration

Topic-level configuration properties are synced across clusters. For example, the cleanup policy (cleanup.policy),
or the log segment file size (segment.bytes), as well as other topic-level configurations are automatically synched to
remote topics. This simplifies managing topics across multiple Kafka clusters.

Consumer group checkpoints

In addition to data and configuration, SRM replicates consumer group progress via periodic checkpoints. At
configurable intervals, checkpoint records are emitted to downstream clusters, encoding the latest offsets for
whitelisted consumer groups and topic-partitions. As with topics, groups are matched against an allowlist which can
be updated dynamically with srm-control. Normally, consumer group offsets are not portable between Kafka clusters,
as offsets are not consistent between otherwise identical topic-partitions on different clusters. SRM’s checkpoint
records account for this by including offsets which are automatically translated from one cluster to another. This
offset translation feature works in both directions; a consumer group can be migrated from one cluster to another
(failover) and then back again (failback) without skipping records or losing progress.

5

Cloudera Runtime Main Use Cases

Automatic topic and partition detection

SRM monitors Kafka clusters for new topics, partitions, and consumer groups as they are created. These are
compared with configurable whitelists, which may include regular expressions.

Tooling to automate consumer migration

SRM tooling enables operators to translate offsets between clusters and to migrate consumer groups while preserving
state.

Centralized configuration for multi-cluster environments

SRM leverages a single top-level configuration file to enable replication across multiple Kafka clusters. Moreover,
command-line tooling can alter which topics and consumer groups are replicated in real-time.

Replication monitoring

Since cluster replication will mainly be used for highly critical Kafka applications, it is crucial for customers to be
able to easily and reliably monitor the Kafka cluster replications. The SRM Service collects and aggregates Kafka
replication metrics and make them available through a REST API. This REST API is used by Streams Messaging
Manager (SMM) to display metrics. Customers could also use the REST API to implement their own monitoring
solution or plug it into third party solutions. The metrics make the state of cluster replication visible to end users who
then can take corrective action if needed.

Replication policies

The replication policy used by SRM defines the basic rules of how SRM replicates data. SRM ships with two
replication policies that are designed for different use cases. These are the DefaultReplicationPolicy, which
uses topic name prefixes to provide replication loop detection, and the IdentityReplicationPolicy, which
mimics the behavior of MirrorMaker 1 and provides prefixless replication. Both policies also support the monitoring
features provided by the SRM Service.

In addition to the Cloudera provided policies, custom developed replication policies can be used. Developing and
using your own replication policy enables you to gain full control over how SRM replicates data.

Important: Cloudera provides limited support for deployments that use custom replication policies.
Additionally, some key features including replication monitoring with the SRM Service will not work
if a custom replication policy is in use. Whenever possible, Cloudera recommends that you use the
DefaultReplicationPolicy.

For more information, see Replication flows and replication policies.

Remote topic discovery and tracking

SRM uses an internal Kafka topic to track which topics are being replicated in a replication flow. This enables the
SRM Service to filter topics from monitoring if they are no longer being replicated. Additionally, this feature enables
replication monitoring with the SRM Service even if prefixless replication is being used.

Related Information
Monitoring Kafka cluster replications using Streams Messaging Manager

Streams Replication Manager replication flows and replication policies

Replication flows and replication policies

Main Use Cases

Learn about the main use cases of SRM.

6

https://docs.cloudera.com/runtime/7.3.1/smm-using/topics/smm-monitor-replications.html
https://docs.cloudera.com/runtime/7.3.1/srm-overview/topics/srm-replication-flows.html

Cloudera Runtime Streams Replication Manager use case architectures

Apache Kafka has become an essential component of enterprise data pipelines and is used for tracking clickstream
event data, collecting logs, gathering metrics, and being the enterprise data bus in a microservices based architectures.
Kafka supports internal replication to support data availability within a cluster. However with Kafka based
applications becoming critical, enterprises require that the data availability and durability guarantees span entire
cluster and site failures.

Replication of data across clusters and sites is key for the following use cases:
Disaster Recovery

Common enterprise use cases for cross-cluster replication is for guaranteeing business continuity in
the presence of cluster or data center-wide outages.

Aggregation for Analytics

Aggregate data from multiple streaming pipelines possibly across multiple data centers to run batch
analytics jobs that provide a holistic view across the enterprise.

Data Deployment after Analytics

This is the opposite of the aggregation use case in which the data generated by the analytics
application in one cluster (say the aggregate cluster) is broadcast to multiple clusters possibly across
data centers for end user consumption.

Isolation

Due to performance or security reasons, data needs to be replicated between different environments
to isolate access. In many deployments the ingestion cluster is isolated from the consumption
clusters.

Geo Proximity

In geographically distributed access patterns where low latency is required, replication is used to
move data closer to the access location.

Cloud Migration

As more enterprises have an on-premise and cloud presence, Kafka replication can be used to
migrate data to the public or private cloud and back.

Legal and Compliance

Much like the isolation uses case, a policy driven replication is used to limit what data is accessible
in a cluster to meet legal and compliance requirements.

Streams Replication Manager use case architectures

You can deploy Streams Replication Manager (SRM) in many different ways and for many different use cases. The
following collects example use case architectures where SRM is used to achieve high availability or used for cluster
migration.

Highly available Kafka architectures
A highly available Kafka deployment must be able to survive a full single cluster outage while continuing to process
events without data loss. With SRM, you can implement highly available Apache Kafka deployments which either
follow an Active/Standby or an Active/Active model.

Active/Standby architecture

In an Active/Standby scenario, you set up two Kafka clusters and configure SRM to replicate topics bidirectionally
between both clusters. A VIP or load balancer directs your producers to ingest messages into the active cluster from
which consumer groups are reading from.

Figure 2: Active/Standby standard operation

7

Cloudera Runtime Streams Replication Manager use case architectures

In case of a disaster, the VIP or load balancer directs the producers to the secondary cluster. You can easily migrate
your consumer groups to start reading from the secondary cluster or simply wait until the primary cluster is restored if
the resulting consumer lag is acceptable for your use case.

While the primary cluster is down, your producers are still able to ingest. Once the primary cluster is restored, SRM
automatically takes care of synchronizing both clusters making failback seamless.

Figure 3: Active/Standby cluster failure

Implementing an Active/Standby architecture is the logical choice when an existing disaster recovery site with
established policies is already available, and your goals include not losing ingest capabilities during a disaster and
having a backup in your disaster recovery site.

Active/Active architecture

In an Active/Active scenario, your producers can be load balanced to either your primary or secondary cluster. SRM
is configured to replicate topics bidirectionally between both clusters. What makes this architecture Active/Active
is the fact that you now have consumers reading from both clusters at the same time, essentially acting like a cross-
cluster consumer group.

In case of a disaster the VIP or load balancer directs the producers to the secondary cluster and the secondary cluster
consumer group is still able to process messages. While the primary cluster is down, your producers are still able to

8

Cloudera Runtime Streams Replication Manager use case architectures

ingest and your consumers are still able to process messages. This results in a zero downtime and hands-off failover
in case of a disaster. Once the primary cluster is back online, SRM automatically takes care of synchronizing both
clusters and your primary consumer group resumes processing messages.

Figure 4: Active/Active architecture

Cross data center replication

Certain applications not only require local high availability within one Data Center (DC) or one Availability Zone
(AZ), but have to be highly available across DCs as well. You can use SRM to set up replication between Kafka
clusters in different DCs. This results in messages being available to consumers in each of your DCs.

A load balancer directs your producers to the local or closest DC if the primary DC is down. SRM is configured to
replicate topics between all DCs. If you are using more than two DCs, SRM is configured to create a “replication
circle”, ensuring a single DC failure (for example, us-north in the example below) does not halt replication between
the remaining clusters.

Figure 5: Cross DC replication architecture

9

Cloudera Runtime Streams Replication Manager use case architectures

Cluster migration architectures
In addition to high availability use cases, SRM can be used for cluster migration and aggregation scenarios as well.

On-premise to cloud and Kafka version upgrade

If you have an on-premises Apache Kafka cluster that you want to migrate to the cloud, not only do you have to
migrate consumers and producers, you also have to migrate topics and their messages to the new cloud-based cluster.

After you have set up replication through SRM, you only need to point your consumers to the new brokers before
you can start processing messages from the cloud cluster. This approach ensures that the historical data kept in the
on-premises Kafka cluster is migrated to the cloud cluster allowing you to replay messages directly from the cloud
without having to go back to your on-premises cluster.

Figure 6: Cluster migration on-premise

10

Cloudera Runtime Streams Replication Manager use case architectures

Aggregation for analytics

SRM can be used to aggregate data from multiple streaming pipelines, possibly across multiple data centers (DC), to
run batch analytics jobs that provide a holistic view across the enterprise. For aggregation type architectures Cloudera
recommends that you use the IdentityReplicationPolicy, which provides prefixless replication. When this
replication policy is in use, remote (replicated) topics names are not altered. As a result, you can easily aggregate
multiple topics from multiple clusters into one. For more information, see Replication flows and replication policies
or Enabling prefixless replication.

Figure 7: Aggregation for Analytics

11

Cloudera Runtime Streams Replication Manager Architecture

Related Information
Replication flows and replication policies

Enabling prefixless replication

Streams Replication Manager Architecture

Learn about the architecture of the Streams Replication Manager Driver and Service, which are two main components
(roles) that make up Streams Replication Manager

Streams Replication Manager Driver
The Streams Replication Manager Driver is responsible for executing the configured replication work between Kafka
clusters. This includes data replication, consumer group offset replication, and heartbeating.

The Streams Replication Manager Driver role (SRM Driver) is built on top of the Kafka Connect framework and
utilizes a group of connectors to execute replication. While Kafka Connect is bound to a single Kafka cluster by
design, the SRM Driver must connect to multiple Kafka clusters. The SRM Driver achieves this by wrapping multiple
Connect workers in a single driver process. Specifically, for each possible replication between the configured
clusters, the SRM Driver spins up a separate Connect worker. The Connect workers join a Connect group which
is dedicated to a single replication in the target Kafka cluster. Afterwards, each Connect group creates a single
MirrorSourceConnector, a single MirrorCheckpointConnector and a single MirrorHeartbeatConnector. These
Connectors and the task instances they generate are responsible for different aspects of the replication work.

12

https://docs.cloudera.com/runtime/7.3.1/srm-configuration/topics/srm-conf-prefixless-replication.html
https://docs.cloudera.com/runtime/7.3.1/srm-overview/topics/srm-replication-flows.html

Cloudera Runtime Streams Replication Manager Architecture

When SRM Driver High Availability is in use, the Connect workers that are tied to a specific replication, but are
running in different SRM Driver processes, coordinate through the Connect group protocol and balance the load.

Note: The following diagram is a visual representation of the Driver's architecture and showcases the
different components of the Driver. In a running Driver, a single Connect worker can have a single, multiple,
or even no Connectors or tasks assigned to it. As a result of this, the Connector and task distribution shown
in this diagram does not fully reflect how Connectors and tasks are distributed in a running Driver. For more
information on how Connectors and tasks are distributed, see Task architecture and load-balancing.

Connect workers
Learn about the Connect workers created by the Streams Replication Manager Driver.

The Streams Replication Manager Driver role (SRM Driver) wraps multiple Connect workers in its process. Each
Connect worker corresponds to a possible replication. At startup, if a target is specified for the replication in the
Streams Replication Manager Driver Target Cluster property, a Connect worker is created for each possible cluster
pair based on the aliases present in Streams Replication Manager Cluster alias. This means that by default for
each possible replication, there is a running Connect worker, regardless of whether the replication is enabled.
For enabled replications, the Connect worker creates and manages all three Connectors (MirrorSourceConnector,
MirrorCheckpointConnector, and MirrorHeartbeatConnector). For disabled replications, the Connect worker only
creates and manages a MirrorHeartbeatConnector. The MirrorHeartbeatConnector is spun up to ensure that the
heartbeats topic is created on all clusters which might be the source of a replication.

In certain scenarios however, some of the Connect workers set up for disabled replications are unnecessary. In
such a case, you can configure SRM to fully deactivate disabled replications that are unutilized. This can be
done by disabling heartbeat emission for these replications. If heartbeat emission is disabled, the Connect worker
and MirrorHeartbeatConnector are not created. As a result, the replication associated with that worker is fully
deactivated. This can help in minimizing the performance overhead caused by unnecessary Connect workers. For
more information on how disable heartbeat emission, see Configuring SRM Driver heartbeat emission.

The Connect workers always coordinate using the target Kafka cluster. They join a Connect group which is dedicated
to a specific replication. This means that even when there are multiple replications targeting the same cluster, the
replications are managed and load-balanced separately, through dedicated Connect groups.

13

https://docs.cloudera.com/runtime/7.3.1/srm-overview/topics/srm-arch-tasks-load-balancing.html

Cloudera Runtime Streams Replication Manager Architecture

Connect internal topics

SRM creates a separate Connect cluster as well as three internal Kafka topics for each replication. The internal topics
are used by the Connect clusters to store their state. These internal topics are all located in the target cluster of the
replication. The topic names reference the source cluster alias.

The three internal topics are as follows:

14

Cloudera Runtime Streams Replication Manager Architecture

• mm2-configs.[***SOURCE ALIAS***].internal

Stores the Connector and Task configurations. Expected to be a single partition topic with cleanup.policy=compa
ct. The records of the topic are generated based on SRM's configuration at startup. Losing the data does not cause
issues for SRM after the service is restarted.

• mm2-offsets.[***SOURCE ALIAS***].internal

Stores the committed source offsets of SRM. SRM uses this internal topic to track its progress in the replication of
the source topic. Expected to be a multi-partition topic with cleanup.policy=compact. The records of the topic are
crucial for tracking the state of replication. Losing the data causes SRM to restart the replication of source topics,
which leads to data duplication in the target cluster.

• mm2-status.[***SOURCE ALIAS***].internal

Stores the current status of Connectors and Tasks. Expected to be a multi-partition topic with cleanup.policy=c
ompact. The records of the topic are created for monitoring purposes and do not affect replication. Losing the data
does not cause issues for SRM after the service is restarted.

All three internal topics are created by SRM at startup with the expected configurations. Cloudera does not
recommend reconfiguring or deleting these topics manually. Doing so can cause issues with replication, which might
result in data loss. However, if the topics are created with an incorrect configuration, manual reconfiguration is
required. In a case like this, SRM must be stopped, and the topic properties must be updated with correct values.
Updating topic properties can be done with the kafka-configs tool.

Related Information
kafka-configs

Configuring SRM Driver heartbeat emission

Connectors
Learn about the different Connector implementations created by the Connect workers of the Streams Replication
Manager Driver.

The Streams Replication Manager Driver role (SRM Driver) employs multiple Connect workers to execute
replication, one per each replication. Inside the Connect workers, three separate Connector implementations are
utilized. These are the following:

• MirrorSourceConnector
• MirrorHeartbeatConnector
• MirrorCheckpointConnector

MirrorSourceConnector

The MirrorSourceConnector is responsible for replicating topics between the source and the target
cluster. The topics to be replicated are defined by allow and deny lists, which can be manipulated
using the srm-control tool.

In addition to replicating data, the MirrorSourceConnector also manages the offset sync topic in
the source cluster. When production into the target cluster is successful, the mapping between the
source offset and the target offset is written into an offset sync topic in the source cluster. The offset
sync topic is used by the MirrorCheckpointConnector.

15

https://docs.cloudera.com/runtime/7.3.1/kafka-managing/topics/kafka-manage-cli-configs.html
https://docs.cloudera.com/runtime/7.3.1/srm-configuration/topics/srm-config-heartbeat-emission.html

Cloudera Runtime Streams Replication Manager Architecture

MirrorHeartbeatConnector

The MirrorHeartbeatConnector is responsible for creating the heartbeats topic in the target cluster. It
also periodically produces heartbeats into the heartbeats topic. The purpose of the heartbeats topic is
twofold:

• It ensures that a topic is available at all times on the source clusters. This way, a replication
always has at least a single topic that it can pick up. This functions as a reliable smoke test for
the replication.

• It is used by the SRM Service to discover configured replications.

MirrorCheckpointConnector

The MirrorCheckpointConnector is responsible for replicating the committed group offsets between
the source and target clusters. The offsets are calculated based on the offset sync topic managed by
the MirrorSourceConnector. The offsets of the groups and the topic partitions that are replicated are
defined by allow and deny lists, which can be manipulated using the srm-control tool.

The offsets are written into the checkpoint topic in the target cluster. The contents of the checkpoint
topic can be exported with srm-control. Exported offsets can then be applied to the consumer groups
in the target cluster with the kafka-consumer-groups Kafka tool.

In addition to writing the mapped offsets into the checkpoint topic, the connector is also capable of
periodically applying the offsets to the consumer groups in the target cluster. This is done using the
Kafka Admin API.

16

Cloudera Runtime Streams Replication Manager Architecture

Task architecture and load-balancing
Learn how tasks are distributed and how load is balanced by the Streams Replication Manager Drivers that are
running in the same cluster.

Streams Replication Manager Driver roles (SRM Driver) of the same cluster share the load of the replications among
each other. They utilize the task load balancing of the Connect framework. Each Connector in a replication creates a
set of task configurations. The number of tasks depend on the replicated topic partitions, groups, and the Tasks Max
configuration of SRM. These task instances provide a way to parallelize the work in an SRM replication. After the
Connectors create the task configurations, the Connect framework distributes the tasks between the SRM Drivers.
More specifically, between the Connect workers running in the SRM Drivers corresponding to a specific replication
flow. The task instances are as follows:

MirrorSourceTask

The MirrorSourceTask is created by the MirrorSourceConnector. It is responsible for executing data replication. A
MirrorSourceTask wraps a consumer and a producer instance. The consumer instance is managed by the task. The
producer instance is managed by the Connect framework.

Each task receives its assignment from the MirrorSourceConnector as a list of topic partitions. These are assigned to
the consumer. The fetched records are then forwarded to the producer. The target topic name is generated based on
the ReplicationPolicy.

The number of MirrorSourceTasks created in a replication is based on the following formula:

 min(tasks.max, source_topic_partition_count)

In this formula, tasks.max corresponds to what Tasks Max is set to in SRM's configuration. The source_topic_partiti
on_count is the number of replicated topic partitions, which is based on the topic allow and deny lists configured with
the srm-control tool.

17

Cloudera Runtime Streams Replication Manager Architecture

MirrorCheckpointTask

The MirrorCheckpointTask is created by the MirrorCheckpointConnector. It responsible for executing the consumer
group offset sync. A MirrorCheckpointTask wraps an admin client and a producer instance. The admin client is
managed by the task. The producer instance is managed by the Connect framework.

Each task receives its assignment from the MirrorCheckpointConnector as a list of consumer groups. The assigned
consumer group offsets are periodically queried for the replicated topic partitions through the admin client, and are
written into the target cluster’s checkpoints topic. The replicated offsets can also be applied to the consumer groups in
the target cluster by setting sync.group.offsets.enabled to true.

The number of MirrorCheckpointTasks created in a replication flow is based on the following formula:

min(tasks.max, source_consumer_group_count)

In this formula, tasks.max corresponds to what Tasks Max is set to in SRM's configuration. The source_consu
mer_group_count is the number of replicated consumer groups, which is based on the group allow and deny lists
configured with the srm-control tool.

MirrorHeartbeatTask

The MirrorHeartbeatTask is created by the MirrorHeartbeatConnector. It is responsible for producing heartbeats
into the target cluster’s heartbeats topic. A MirrorHeartbeatTask wraps a producer instance that is managed by the
Connect framework. In each replication, there is a single MirrorHeartbeatTask instance.

Task load balancing

Multiple Connect workers participate in each replication. This typically means that each SRM Driver of the cluster
has one Connect worker dedicated to a specific replication.

After the Connect group is formed by the Connect workers, the Connectors are instantiated and task configurations
are generated. This results in three Connectors, a number of MirrorSourceTasks and MirrorCheckpointTasks, as
well as a MirrorHeartbeatTask. For a newly formed group, these Connectors and task instances are assigned to
the Connect workers in a round robin fashion. When the group already has an existing assignment, and there is
membership change (for example, a Connect worker joins or leaves the group), the Connectors and tasks are assigned
in a cooperative and incremental manner. This allows for the majority of the work to continue without interruption.

Unless there are no changes made to the task configurations, meaning that no new topics and groups are added to the
replication, the task definitions stay the same. However, based on Connect group membership changes, the tasks can
be moved between workers. With classic Connect, these tasks can be managed separately through an admin API, but
in the case of SRM, this API is not available, and tasks can only be restarted by restarting the SRM Driver cluster.

18

Cloudera Runtime Streams Replication Manager Architecture

Driver inter-node coordination
Learn about how different Streams Replication Manager Driver instances communicate with each other.

As per the Connect framework, members of a Connect group get updates from the group leader through Kafka, using
the Connect group protocol. In some cases, followers also need to be able to communicate with the group leader.
For this purpose, the Connect framework introduced a REST API. This API allows followers to push notifications
to the leader. This step is necessary when dynamic configuration changes occur in a Connector. In case of SRM,
configuration changes happen when new topics and groups are added to the replication. This can happen in two ways:

• New topics and groups appear in the source cluster that conform to the allow and deny lists of the replication.
• Allow and deny lists are added using the srm-control tool.

To support this necessary channel of communication inside SRM, each Driver spins up a REST server per replication
flow. With this implementation, each nested Connect worker is a fully functional, as per the original design of
Connect. These replication specific REST servers are configurable, for more information, see Configuring replication
specific Kafka Connect REST servers.

Related Information
Configuring replication specific Kafka Connect REST servers

Streams Replication Manager Service
The Streams Replication Manager Service is responsible for processing the metrics produced by the Streams
Replication Manager Drivers. Additionally, it provides a queryable REST API that you can use to monitor and track
replications.

Streams Replication Manager Driver roles (SRM Driver) produce raw metrics into the target Kafka clusters. Each
replication has a separate raw metric topic. Streams Replication Manager Service roles (SRM Service) run a Kafka
Streams application internally, which aggregates the raw metrics. The Streams application ensures that the metrics
processing work is load balanced between the SRM Service instances of the same cluster, and that the members of the
cluster can coordinate when serving REST API queries.

19

https://docs.cloudera.com/runtime/7.3.1/srm-configuration/topics/srm-conf-replication-rest-server.html

Cloudera Runtime Streams Replication Manager Architecture

As a result of this architecture, the SRM Service can only report on replication flows targeting the Kafka cluster
which is targeted by the SRM Service.

Multi cluster targeting

The SRM Service is capable of targeting multiple Kafka clusters. In this case, an SRM Service instance spins up a
Kafka Streams application for each target Kafka cluster. This way, the SRM Service is able to report on all replication
flows targeting any of the configured target clusters.

Remote Querying

An SRM Service cluster can be configured to target and gather metrics from multiple clusters (multi cluster
targeting). However, a setup like this can result in heavily loaded Service roles, which might not be suitable for
your deployment. To circumvent this issue, the SRM Service is capable of connecting to and communicating
with other, remote SRM Services to fetch their metrics. This is called Remote Querying. Using Remote Querying
makes it possible to designate an SRM Service cluster in your deployment to act as a monitoring gateway. The
designated SRM Service cluster then can be used to monitor all clusters and replications in your deployment. For
more information, see Remote Querying.

Using the SRM Service REST API

The SRM Service offers a Swagger UI for exploring and querying the REST API. For a user-friendly UI solution,
Streams Messaging Manager (SMM) can be integrated with SRM. When SMM is configured to connect to SRM,
the Replications page becomes available on the SMM UI. This page displays the information available on the

20

Cloudera Runtime Streams Replication Manager Architecture

SRM Service REST API. For more information on how you can integrate the two services see Integrating Streams
Replication Manager with Streams Messaging Manager.

Related Information
Integrating Streams Replication Manager with Streams Messaging Manager

Remote Querying
Remote Querying in Streams Replication Manager (SRM) refers to the SRM Service's capability of querying other,
remote SRM Services to fetch the remote cluster replication metrics. This allows users to monitor all replications of a
deployment that has multiple instances of SRM through a single SRM Service.

Overview

The SRM Service role gathers, aggregates, and exposes metrics related to cluster replications. While a single cluster
of SRM Service roles (SRM Service cluster) can be configured to target and gather metrics from multiple clusters, a
setup like this can result in heavily loaded Service roles, which might not be suitable for your deployment. Instead,
you can choose to have a single SRM Service cluster connect to other, remote SRM Service clusters and fetch metrics
from them. This is called Remote Querying.

Using Remote Querying makes it possible to designate an SRM Service cluster in your deployment to act as a
monitoring gateway. The designated SRM Service cluster can then be used to monitor all clusters and replications
in your deployment. This way, a single SRM Service cluster can provide you with information on all clusters and
replications. In addition, if you have Streams Messaging Manager (SMM) integrated with the SRM Service cluster
acting as the gateway, information regarding all replications will be available in that SMM instance's UI.

How it works

Remote SRM Service clusters are discovered through Kafka. SRM Service clusters advertise themselves through their
target Kafka cluster by writing data into a heartbeats topic. The information advertised is the Service role's protocol,
host, port and root API path. When Remote Querying is configured for a specific SRM Service cluster, that SRM
Service cluster connects to the specified external Kafka clusters, consumes the heartbeats topics, and based on the
advertised information, discovers the remote SRM Service clusters.

21

https://docs.cloudera.com/runtime/7.3.1/smm-configuring/topics/smm-installing-cdppubc.html

Cloudera Runtime Streams Replication Manager Architecture

Following discovery, an SRM Service cluster can cooperate with its remote counterparts and fetch the metrics related
to remote replications. These metrics can then be queried using the SRM REST API, or viewed on the SMM UI.

Data locality

When the feature is enabled, all metrics are still processed locally. Each SRM Service cluster processes the metrics of
its target Kafka cluster only. The SRM Service cluster configured to be the gateway does not take over and process
the metrics of the remote SRM Service clusters. It only communicates with the remote SRM Service clusters to fetch
and then serve their metrics.

However, because metrics processing remains local, when you enable the feature, additional traffic is generated
between the gateway and remote SRM Service clusters. It is important that you take this into consideration especially
if one or more of your SRM installations are located in a Public Cloud environment. For more information on the
amount of data generated, see SRM Service data traffic reference.

Remote Querying example

Consider the following deployment:

22

Cloudera Runtime Streams Replication Manager Architecture

There are three clusters, cluster A, B, and C. All clusters have Kafka and SRM deployed on them. Additionally,
Cluster A has SMM installed as well. Bidirectional replication is happening between Cluster A and Cluster B.
Additionally, unidirectional replication is set up from Cluster A to Cluster C. Each SRM Service cluster is targeting
its co-located Kafka.

In this scenario, Remote Querying is configured and enabled for the SRM Service cluster A. This enables you to
monitor all replications in the deployment using SRM Service cluster A. Additionally, information regarding all
replications can be viewed in SMM deployed in Cluster A.

Without Remote Querying, SMM would only be able to display replications that are targeting Cluster A. If you
wanted to monitor any other replications, you would need to manually query each SRM Service cluster separately
using the REST API, or set up separate instances of SMM on each of the clusters.

Related Information
SRM Service data traffic reference

23

https://docs.cloudera.com/runtime/7.3.1/srm-reference/topics/srm-service-data-traffic.html

Cloudera Runtime Streams Replication Manager monitoring and metrics

Streams Replication Manager monitoring and metrics

Streams Replication Manager metrics can give you insight into the status of SRM and the replication process as a
whole. Learn how SRM metrics are collected, processed, and exposed on the SRM Service REST API.

Important: While SRM monitoring using the SRM Service and its REST API is supported when the
IdentityReplicationPolicy is in use, a number of limitations apply, see Streams Replication
Manager replication flows and replication policies on page 28.

Streams Replication Manager (SRM) consists of two main components (roles) that are each responsible for different
tasks related to data replication. These are the SRM Driver and SRM Service roles.

The SRM Driver role is based on the Kafka Connect Framework and utilizes Connect connectors and connector tasks
to replicate Kafka data. These connectors and tasks produce raw metrics that describe the replication process. The
SRM service is responsible for collecting, processing, and exposing these metrics. The metrics can be queried using
the SRM Service REST API or viewed in Streams Messaging Manager on the Replications page.

Note: For a more in depth look at the internal architecture of SRM as well as how the Driver and Service
roles work, see Streams Replication Manager Architecture.

The following sections provide an overview on how raw SRM metrics are collected, how they are processed into
metrics that can be used for monitoring.

Raw metric collection

Because the SRM Driver is built on top of the Kafka Connect framework, the connectors and connector tasks of
the Driver produce raw Kafka Connect metrics. Although there are many metrics that exist within the Connect
framework, SRM only collects the following raw metrics:

• Status metrics are collected from connectors.
• Status, byte-rate, replication-latency-ms, checkpoint-latency-ms, and replication-records-lag metrics are collected

from connector tasks.

All of these metrics have two intrinsic properties. They have an origin and a subject. The origin denotes where the
metric is collected from. The subject denotes what entity the metric describes. Based on these properties, the raw
metrics can be organized into two groups. Connector-originated metrics, which describe the replication flows, and
task-originated metrics, which describe the replication of individual topic partitions.

Metrics collected from connectors are connector-originated. Connectors within SRM’s framework represent the
replications (also referred to as replication flows). Therefore, the subject of connector-originated metrics are the
replications. Because the subject is the replication flow, connector-originated metrics have a wide scope and describe
the replication process from a high level. Think of a two cluster replication scenario. The replication flow acts as a
bridge between the two clusters. Connector-originated metrics describe the bridge, or in other words, the replication.

Metrics collected from connector tasks are task-originated. Tasks within SRM’s framework represent the actual
replication work that is performed. The tasks are the processes that replicate the messages between the source and
target clusters from the topic partitions. As a result, the subject of task-originated metrics is the topic partition.
Compared to connector-originated metrics, task-originated metrics have a restricted scope and describe the replication
process at a low level.

The raw metrics collected by SRM do not provide good insights on the replication process as a whole and cannot
be used as is for monitoring. For example, even though connector-originated metrics describe the replications, a
replication is always made up of multiple connector instances (or workers), which may even run on different nodes.
Therefore, the raw metrics of a single connector instance (or worker) only provide partial data on the replication.
Because of this, raw metrics are not exposed by the SRM service. Instead, SRM processes and aggregates them before
exposing them for consumption on the REST API.

24

https://docs.cloudera.com/runtime/7.3.1/srm-overview/topics/srm-architecutre.html

Cloudera Runtime Streams Replication Manager monitoring and metrics

Metrics processing and aggregation

Evaluating a single metric is rarely useful. For example, looking at the transmitted bytes of an ongoing replication
for a single topic partition in the last 30 seconds does not provide good insight on what is actually happening with
the topic or the replication. To provide metrics that describe the replication process in a meaningful way, statistics
derived from the raw data are required. In other words, the raw metric data must be processed before it can be
exposed for consumption. Creating statistics involves gathering data, in this case raw metrics, and deriving their
characteristics through processing and aggregation. The result of this are the metrics that SRM exposes on its REST
API.

When processing raw data, SRM uses a combination of the following two strategies:

SRM collects and processes metrics over a time period

This is done because having access to the momentary status of a single entity does not provide
real value. On the other hand, data gathered over time is descriptive and provides a good filter
for temporary or short lived performance issues. SRM gathers data over time using sliding time-
window averaging in the case of numeric metrics.

SRM collects and processes metrics across different entities

When monitoring SRM, the entities that you want to monitor are the topics and replications. This
is because it is the metrics of the topics and replications that can give you tangible information
on SRM’s status. However, there are no raw metrics available that directly describe topics.
Additionally, only status metrics are available for the replications; raw metrics measuring byte rate,
latency, or lag are not. Nonetheless, SRM can still provide metrics on the topics and replications by
way of aggregating available raw metrics across different sets of entities.

Specifically, SRM gathers the raw metrics that describe the topic partitions (the task-originated raw
metrics). Next, it aggregates the data over all topic partitions that belong to a topic. That is, over the
topic. The resulting data are the metrics that describe the topic.

Metrics that describe the replications are produced in a similar way. SRM gathers the raw partition
metrics and aggregates them over a certain replication. To be precise, over all topics that take part in
that replication. The resulting data are the metrics that describe the replication.

All resulting metrics reported for the entities include the statistical minimum, maximum, average,
and sum of the sample.

Note: Not all statistics are meaningful. For example, the sum of replication speed
over all topic partitions does not give good insight on the overall performance of the
replication.

Based on how the data is processed, the exposed metrics can be categorized into the following levels:
Cluster-level metrics

Cluster-level metrics are aggregated over a certain time frame and (contrary to the name) over a
certain replication. These metrics reflect the overall performance of a certain replication.

Topic-level metrics

Topic-level metrics are aggregated over a certain time frame and over a topic. They reflect the
overall progress and status of a replication with regards to a single topic.

Available numeric metrics

Table 1: Streams Replication Manager numeric metrics

name level description

byte-rate cluster The average number of bytes that are being
replicated per second, aggregated over a
replication

byte-rate topic The average number of bytes that are being
replicated per second, aggregated over a topic

25

Cloudera Runtime Streams Replication Manager monitoring and metrics

name level description

replication-latency-ms cluster Time it takes records to replicate from source
to target cluster, aggregated over a replication

replication-latency-ms topic Time it takes records to replicate from source
to target cluster, aggregated over a topic

checkpoint-latency-ms cluster Time it takes consumer group offsets to
replicate from source to target cluster,
aggregated over a replication

checkpoint-latency-ms topic Time it takes consumer group offsets to
replicate from source to target cluster,
aggregated over a topic

replication-records-lag cluster The number of “to be replicated” messages
(difference between the source offset of the
last replicated message and the log end offset
of the source) aggregated over a replication.
The “sum” statistics of the metric describes the
overall lag of the replication with respect to a
replication flow.

replication-records-lag topic The number of “to be replicated” messages
(difference between the source offset of the
last replicated message and the log end offset
of the source) aggregated over a topic. The
“sum” statistics of the metric describes the
overall lag of the replication in a topic.

Notes about calculation of metrics

When monitoring replication and checkpoint latency metrics, keep in mind the following regarding their calculation.

replication-latency-ms

Replication latency is the difference between the record timestamp of the message as saved in the
source cluster and the time of the commit in the performing task. Because the source and target
clusters in a replication are two distinct clusters, the record timestamp of the message and the
commit time will come from two different clusters. As a result, the clocks of the two clusters must
be in sync. Otherwise, SRM will calculate the latency incorrectly, which can lead to negative or
other misleading values being reported

checkpoint-latency-ms

Checkpoint latency is the difference between the time when the data necessary for creating a
checkpoint is fetched (this includes consumer group offsets) and when the checkpoint is eventually
committed.

Status metrics

Unlike raw metrics related to latency, record lag, or byte rate, raw status metrics are not numeric. These are simple
strings of text that describe the state of the connector or task. For example, connectors will report that they are paused,
running, or stopped. Connector tasks will report that they are running, stopped, or failed.

Similarly to other raw metrics, status metrics are not exposed directly by SRM and are also processed and aggregated.
SRM uses status metrics as input to create detailed status messages that describe the overall status of a replication and
as input for health checks.

The status messages that SRM produces are more complex than the raw metrics used for input. They include
the reason and cause of why a specific replication is in the reported state. These messages can be viewed on the
Replications page of the SMM UI.

Related Information
Streams Replication Manager Service REST API

Streams Replication Manager Service REST API Reference

26

https://docs.cloudera.com/runtime/7.3.1/srm-overview/topics/srm-rest-api-overview.html
https://docs.cloudera.com/runtime/7.3.1/srm-rest-api-reference/index.html

Cloudera Runtime Streams Replication Manager Service REST API

Monitoring Kafka cluster replications using Streams Messaging Manager

Streams Replication Manager Service REST API

The Streams Replication Manager Service REST API can be used to monitor your replication workloads. Learn about
the endpoints, endpoint versions, and the data that the endpoints expose.

The processed, aggregated, and in part derived metrics produced by the Streams Replication Manager (SRM) Service
are available for consumption through the various endpoints of the SRM Service REST API. Exposed metrics
are aggregated over a predefined set of samples and a sliding time window. In addition to aggregated values, the
endpoints also return the statistical minimum, maximum, average, and sum of the corresponding sample.

Accessing the API and its endpoints

If you have access to a running instance of SRM, you can find a comprehensive list of the endpoints, their
descriptions, as well as example responses for all endpoints on the SRM Service REST API’s Swagger UI.

To access the Swagger UI, select the Streams Replication Manager service in Cloudera Manager and go to Web UI
SRM Service Swagger UI [***CLUSTER NAME***]. Alternatively, you can also view the Streams Replication
Manager REST API Reference for a comprehensive list of the endpoints.

Tip: If you are accessing the Swagger UI on a running cluster, you can make calls to each endpoint directly
on the UI using the Try it out option.

Endpoint versions

REST API endpoints are grouped based on their version. There exists V2 and V1 (legacy) endpoints. Both V1 and V2
endpoints are similar in content and role. Additionally, there is considerable overlap in functionality. However, V1 is
provided only for backward compatibility. As a result, Cloudera recommends that you always use V2 endpoints when
monitoring SRM. V2 is more sophisticated, offers more endpoints, and allows the target clusters to be specified by
the user. The same is not true for V1 endpoints where the target cluster is fixed. It is always the target cluster of the
SRM Service instance that serves the REST call.

Internal and non-internal endpoints

In addition to version, the endpoints are also grouped based on whether they are internal or not. Cloudera
recommends that you always use non-internal endpoints for monitoring. Internal endpoints are reserved for internal
use by SRM. For example, if the Remote Querying feature is set up in your deployment, the SRM Service instances in
the deployment use the internal endpoints to query each other's metrics.

SMM integration

The endpoints made available on the API can also be used by services that integrate with SRM. Streams Messaging
Manager (SMM), for example, queries the replication metrics using the endpoints and makes the data it collected
available for consumption on the Replications page of the SMM UI. In other words, the replication insights that
you can view in SMM are based on the metrics that SRM produces. For more information on how SMM integrates
with SRM as well as the Replications page, see Monitoring Kafka Cluster Replications using Streams Messaging
Manager.

Related Information
Streams Replication Manager Service REST API Reference

Monitoring Kafka cluster replications using Streams Messaging Manager

Streams Replication Manager monitoring and metrics

Streams Replication Manager Service architecture

Remote Querying

27

https://docs.cloudera.com/runtime/7.3.1/smm-using/topics/smm-monitor-replications.html
https://docs.cloudera.com/runtime/7.3.1/srm-rest-api-reference/index.html
https://docs.cloudera.com/runtime/7.3.1/smm-using/topics/smm-monitor-replications.html
https://docs.cloudera.com/runtime/7.3.1/srm-overview/topics/srm-monitoring-metrics.html
https://docs.cloudera.com/runtime/7.3.1/srm-overview/topics/srm-arch-service.html
https://docs.cloudera.com/runtime/7.3.1/srm-overview/topics/srm-arch-service-remote-query.html

Cloudera Runtime Streams Replication Manager replication flows and replication
policies

Streams Replication Manager replication flows and
replication policies

Get familiar with the concepts of replication flows and replication policies. Additionally, learn about the default
replication policies shipped with Streams Replication Manager (SRM) as well as the most commonly used types of
replication flows.

Replication flows

Replication involves sending records and consumer group checkpoints from a source cluster to a target cluster.
In SRM, a replication flow (also referred to as a replication or flow) specifies a source and target cluster pair, the
direction in which data is flowing and the topics that are being replicated. Source and target cluster pairs can be
specified in Cloudera Manager; they are notated source->target. Initially, when source->target pairs are set up they
are considered inactive, as no data is being replicated between them. To start replication, you must specify which
topics to replicate with the srm-control command line tool.

Replication in SRM is configured independently for each source->target cluster pair. Moreover, configuration is done
on a per topic basis. This means that each topic in a source cluster can have a different direction or target that it is
being replicated to. A set of topics in the source cluster can be replicated to multiple target clusters while others are
being replicated to only one target cluster. This allows users to set up powerful, topic specific replication flows.

A basic example of a replication flow is when topics are being sent from one cluster to another cluster in a different
geographical location. Note that in this example there is only one replication or source->target pair. Moreover, only
one of the two topics on the source cluster are being replicated to the target cluster.

Figure 8: Simple Replication Flow Example

Replication policies

In any replication flow, the selected source topics are replicated to remote (replicated) topics on the target
cluster. The basic rules of how these topics are replicated is defined by the replication policy that is used by
SRM. CDP includes two replication policies by default. These are the DefaultReplicationPolicy and
IdentityReplicationPolicy. The main difference between the two policies is how they name remote topics.
In addition to these policies, SRM also supports the use of custom replication policies.

DefaultReplicationPolicy

The DefaultReplicationPolicy is the default and Cloudera-recommended replication
policy. This is because the DefaultReplicationPolicy is capable of automatically detecting
replication loops and supports all monitoring features provided by the SRM Service.

This policy prefixes the remote topic's name with the cluster name (alias) of the source topics. For
example, the topic1 topic from the us-west source cluster creates the us-west.topic1 remote topic on
the target cluster.

Figure 9: Simple Replication Flow Example

28

Cloudera Runtime Streams Replication Manager replication flows and replication
policies

If a remote topic is also replicated, the remote topic references all source and target clusters. The
prefix in the name will start with the cluster closest to the final target cluster. For example, the topi
c1 topic replicated from the us-west source cluster to the us-east cluster and then to the eu-west
cluster will be named us-east.us-west.topic1.

Figure 10: Complex Replication Flow Example

Tip: You might want to have your Kafka consumers read messages from
both source and remote topics simultaneously. To achieve this when the
DefaultReplicationPolicy is in use, Kafka consumers should include a
wildcard topic name pattern. For example, suppose that you have a cluster, us-east.
This cluster contains a source topic, topic1, and a remote topic from another cluster,
us-west.topic1. In such a case, you can use the (.*\.)?topic1 pattern, which matches
both topics.

IdentityReplicationPolicy

The IdentityReplicationPolicy does not change the names of remote topics. When this
policy is in use, topics retain the same name on both source and target clusters. For example, the
topic1 topic from the us-west source cluster creates the topic1 remote topic on the target cluster.

This type of replication is also referred to as prefixless replication. This replication policy is
recommended for deployments where SRM is used to aggregate data from multiple streaming
pipelines. Alternatively, this replication policy can also be used if the deployment requires
MirrorMaker1 (MM1) compatible replication.

The IdentityReplicationPolicy has the following limitations:

• Replication loop detection is not supported. As a result, you must ensure that topics are not
replicated in a loop between your source and target clusters.

29

Cloudera Runtime Streams Replication Manager replication flows and replication
policies

• The /v2/topic-metrics/{target}/{downstreamTopic}/{metric} endpoint of SRM Service v2 API
does not work properly with prefixless replication. Use the /v2/topic-metrics/{source}/{target}/
{upstreamTopic}/{metric} endpoint instead.

• The replication metric graphs shown on the Topic Details page of the SMM UI do not work
with prefixless replication.

For more information on how to configure your SRM service to use this policy, see Enabling
prefixless replication.

Custom replication policies

If neither the DefaultReplicationPolicy or IdentityReplicationPolicy
fit your business requirements, you can develop your own replication policy implementation.
Developing and using your own replication policy enables you to gain full control over how SRM
replicates data. For more information, see the ReplicationPolicy interface in the Kafka Java
documentation

Important: Cloudera provides limited support for deployments that use custom
replication policies. Additionally, some key features including replication monitoring
with the SRM Service will not work if a custom replication policy is in use. Whenever
possible, Cloudera recommends that you use the DefaultReplicationPolicy.

Bidirectional replication flows

SRM supports bidirectional replication flows. A bidirectional replication flow is a setup where the topics of two or
more clusters are mutually replicated. Records sent to one cluster are replicated to the other and the other way around.
You can configure any number of clusters in this way.

A common issue with a bidirectional setup is that you can easily create replication loops. A replication loop is
when a topic from one cluster is replicated to another and that same topic is replicated back to the source. The
DefaultReplicationPolicy is capable of detecting replication loops. If this policy is in use, SRM will never
replicate records in an infinite loop. As a result, you can freely use regex patterns in your allow and deny lists without
having to worry about accidental replication loops.

The IdentityReplicationPolicy, on the other hand, cannot detect replication loops. As a result, if using this
policy, you must ensure that topic allow and deny lists are correctly set up without any loops in the replication.

For example, consider the following bidirectional setup.

Figure 11: Bidirectional Replication Flow

This replication setup can be configured with the srm-control as follows:

srm-control topics --source us-west --target us-east --add "topic.*?"

srm-control topics --source us-east --target us-west --add "topic.*?"

30

Cloudera Runtime Streams Replication Manager replication flows and replication
policies

These commands add all topics on both clusters to the replication allowlist using a regex pattern. With the
DefaultReplicationPolicy, these commands would not create replication loops. This is because the
DefaultReplicationPolicy automatically detects that the topics with the prefixes do not need to be replicated
to the source.

Using these srm-control commands with the IdentityReplicationPolicy would, however, result in an
endless replication loop. Remote topics would be replicated back to their source. In a case like this, the allow and
deny lists must be correctly configured so that no loops are present. For example:

srm-control topics --source us-west --target us-east --add topic1, topic2, t
opic3

srm-control topics --source us-east --target us-west --add topicX, topicY, t
opicZ

Note: Regex patterns can still be used with the IdentityReplicationPolicy, but you must ensure
that the regex pattern matches do not create any loops.

Fan-in and fan-out replication flows

You can construct fan-in replication flows, where records from multiple source clusters are aggregated in a single
target cluster.

Figure 12: Fan-in Replication Flow

Similarly, you can construct fan-out replication flows as well, where a single cluster is replicated to multiple target
clusters.

Figure 13: Fan-out Replication Flow

31

Cloudera Runtime Streams Replication Manager remote topic discovery

Related Information
Kafka Java documentation - ReplicationPolicy

Streams Replication Manager remote topic discovery

Learn how Streams Replication Manager (SRM) keeps track of remote topics and how this behavior allows SRM to
provide full support for prefixless replication with the IdentityreplicationPolicy.

In order to provide replication monitoring, SRM must discover and keep track of the topics that are replicated.
By default, SRM achieves this using an internal Kafka topic, which contains information regarding the currently
replicated topics. The behavior is as follows:

1. SRM Drivers periodically check which topics must be replicated.
2. This check results in a list of source – target topic pairs that must be replicated.
3. The SRM Driver writes these source – target pairs into the srm-meta.internal Kafka topic, which is an internal

compact topic located in the target cluster.
4. The SRM Service scans srm-meta.internal and consumes the latest message. The latest message contains the

currently replicated topics as well as source – target topic name mappings.

Remote topic detection takes into consideration the current state of the replication flow. For example, assume that
you have a remote topic, us-east.orders that was replicated at some point in time, but is not currently replicated
anymore. SRM correctly identifies that this topic is no longer replicated and will not keep track of it as a remote topic
indefinitely. The replication metrics provided by the SRM Service also correctly reflect this state of the topic.

In addition, the use of an internal topic to store replication metadata allows SRM to correctly identify which
target maps to which source without relying solely on topic prefixes. This makes it possible for SRM to provide
replication monitoring even if a replication policy different than the DefaultReplicationPolicy is in
use. Most notably, this enables replication monitoring when SRM is configured for prefixless replication with the
IdentityReplicationPolicy.

32

https://kafka.apache.org/34/javadoc/org/apache/kafka/connect/mirror/ReplicationPolicy.html

Cloudera Runtime Automatic group offset synchronization

Automatic group offset synchronization

Automatic group offset synchronization is a feature in Streams Replication Manager (SRM) that automates the export
and application of translated consumer group offsets. Enabling this feature can simplify the manual steps that you
need to take to migrate consumer groups in a failover or failback scenario.

SRM automatically translates consumer group offsets between clusters. While the offset mappings are created by
SRM, they are not applied by default to the consumer groups of the target cluster. As a result, by default, migrating
consumer groups from one cluster to another involves running the srm-control offsets and kafka-consumer-groups
tools. The srm-control offsets tool exports translated offsets, kafka-consumer-groups resets and applies the translated
offsets on the target cluster.

You can automate this process by enabling automatic group offset synchronization. If automatic group offset
synchronization is enabled, the translated group offsets of the source cluster are automatically exported from the
source cluster and are applied on the target cluster (they are written to the __consumer_offsets topic). If you choose
to enable this feature, running srm-control offsets and kafka-consumer-groups is not required to migrate consumer
groups. You only need to restart and redirect consumers to consume from the new cluster.

Although automatic group offset synchronization can simplify migrating consumer groups, ensure that you
understand the following about its behavior:

• Automatic group offset synchronization does not fully automate a failover or failback process. It only allows you
to skip certain manual steps. Consumers must be restarted and redirected to the new cluster even if the feature is
enabled.

• Offsets are synced at a configured interval. As a result, it is not guaranteed that the latest translated offsets are
applied. If you want to have the latest offsets applied, Cloudera recommends that you export and apply consumer
group offsets manually. The exact interval depends on sync.group.offsets.interval.seconds and emit.checkpoints
.interval.seconds.

• The checkpointing frequency configured for SRM can have an effect on the group offset synchronization
frequency. The frequency of group offset synchronization can be configured with sync.group.offsets.interval.
seconds. However, specifying an interval using this property might not result in the offsets being synchronized
at the set frequency. This depends on how emit.checkpoints.interval is configured. The emit.checkpoints.interval
property specifies how frequently offset information is fetched (checkpointing). Because offset synchronization
can only happen after offset information is available, the frequency configured with the emit.checkpoints.int
erval property might introduce additional latency. For example, assume that you set offset synchronization to
60 seconds (default), but have checkpointing set to 120 seconds. In such a case, offset synchronization happens
every 60 seconds, but because offset information is only refreshed every 120 seconds, in practice offsets are only
synchronized every 120 seconds.

• Offsets are only synchronized for the consumers that are inactive in the target cluster. This is done so that the
SRM does not override the offsets in the target cluster.

• During a failover-failback scenario, if a consumer group makes progress in the replica topic in the backup cluster
and a failback occurs, the progress made in the replica topic is lost, and messages are re-processed from the
original topic.

Additionally, SRM checkpointing behavior might affect automatic group offset synchronization in the following
ways:

• By default, SRM checkpointing only uses the latest offset sync record, which means that consumer groups behind
the latest mapping cannot be checkpointed. If the consumer group is behind by more than the value of offset.lag.m
ax property in replicating the records to the offset sync, the offset translation is skipped because the offset is too
far in the past to translate accurately.

Note: In some cases, SRM checkpointing can also take older synchronized offsets into account.

33

Cloudera Runtime Understanding co-located and external clusters

• SRM checkpointing reads the offset syncs topic to create offset mappings for committed consumer group offsets.
In some cases, a mapping might not available in offset syncs. In such a case, SRM copies the source offset, which
might not be a valid offset in the replica topic. This can cause issues when auto offset sync is also turned on.

• If sync.group.offsets.enabled is set to true, Kafka only emits checkpoints for partitions that have offset syncs.
Partitions for which no offsets are committed (because they cannot be translated) do not appear when describing
consumer offsets in the target cluster.

Related Information
Configuring automatic group offset synchronization

Understanding co-located and external clusters

The Kafka clusters that Streams Replication Manager (SRM) connects to can be categorized into two groups. They
can be co-located with or external to SRM. The category dictates how you configure the SRM service and the srm-
control tool.

SRM connects to and replicates data between Kafka clusters, which consist of one or more Kafka brokers, deployed
on clusters. These Kafka clusters that SRM connects to can be categorized into two groups. They can either be co-
located with or external to SRM. Which category a specific cluster falls into is decided based on the relation between
that cluster and the SRM service.

A co-located Kafka cluster is the Kafka cluster that is running in the same cluster as the SRM service. Any other
Kafka cluster that is remote to SRM either logically or geographically is considered external.

For example, consider the following deployment:

34

https://docs.cloudera.com/runtime/7.3.1/srm-configuration/topics/srm-config-auto-group-offset-sync.html

Cloudera Runtime Understanding co-located and external clusters

This deployment has two clusters, and both clusters have a Kafka cluster. However, only Cluster East has SRM
deployed on it. From the perspective of SRM East, Kafka Cluster East is co-located, while Kafka Cluster West is
external.

In a more advanced deployment with multiple SRM services, a single Kafka cluster will fall into both categories.
From the perspective of a specific SRM service a cluster will be co-located, while for others it will be external.

For example, consider the following deployment:

In this example, both clusters have a Kafka cluster as well as SRM. From the perspective of SRM East, Kafka Cluster
East is co-located, Kafka Cluster West is external. From the perspective of SRM West, Kafka Cluster West is co-
located, Kafka Cluster East is external.

It is also possible to not have co-located Kafka clusters. For example, consider the following deployment:

35

Cloudera Runtime Understanding co-located and external clusters

In this example, the clusters that have Kafka deployed on them do not have SRM. Instead, data is replicated by an
SRM instance deployed on a separate cluster. From the perspective of SRM South, both Kafka Cluster East and West
are external, there is no co-located cluster. In a scenario like this, configuration tasks related to the co-located cluster
do not need to be completed.

Being able to correctly identify what category a Kafka cluster falls into is important as the category dictates how
you configure each SRM service and the srm-control tool. In general, a co-located Kafka cluster requires less
configuration than external Kafka clusters. This is because Cloudera Manager is able to automatically pass certain
configuration properties about the co-located Kafka cluster to SRM. External Kafka clusters on the other hand must
be fully configured and specified manually.

36

Cloudera Runtime Understanding SRM properties, their configuration and hierarchy

For more information on how to configure and set up SRM, review any of the configuration examples available in
Using Streams Replication Manager in CDP Public Cloud overview or Configuration examples.

Understanding SRM properties, their configuration and
hierarchy

There are a number of configuration properties that Streams Replication Manager (SRM) accepts, but are not
exposed directly in Cloudera Manager. You can configure these properties with the Streams Replication Manager's
Replication Configs property. Additionally, these properties can be configured on different levels allowing for
granular control over how and when they are applied.

SRM supports various configuration properties. With the exception of adding and enabling replications, all
fundamental properties required to set up and start data replication between clusters are available for configuration
directly through Cloudera Manager, or are configured automatically by Cloudera Manager.

In addition to these properties, SRM accepts and supports a number of additional properties including Streams
Replication Manager specific properties, Kafka Connect worker properties as well as Kafka properties available in the
version of Kafka that you are using. These however are not directly available for configuration in Cloudera Manager,
and do not have dedicated configuration entries on the UI. Properties like these are configured through the Streams
Replication Manager's Replication Configs property.

The configuration properties that you add to Streams Replication Manager's Replication Configs can be set on
multiple levels with the help of property prefixes. These prefixes allow you to exercise control over when and where
(at what level) a configuration is used by SRM. This gives you fine grained control over how data is replicated.

The prefixes that you can use and the configuration levels they correspond to are as follows:

• Global level - no prefix

For example:

offset.flush.timeout.ms

• Global worker level - prefixed with the workers. prefix

For example:

workers.scheduled.rebalance.max.delay.ms

• Global connector level - prefixed with the connectors. prefix

For example:

connectors.producer.override.buffer.memory

• Cluster level - prefixed with cluster alias

For example:

[***ALIAS***].offset.flush.timeout.ms

• Replication level - prefixed with a replication name

For example:

[***ALIAS***]->[***ALIAS***].consumer.max.poll.records

Note: All properties in SRM support prefixes, even the ones that you set directly through the Cloudera
Manager UI. However, the prefixes for these properties are set automatically in the background based on your
overall configuration. Therefore, from a user perspective, prefixes only become significant when you use
Streams Replication Manager's Replication Configs.

37

https://docs.cloudera.com/runtime/7.3.1/srm-cloud-use-cases/topics/srm-cloud-using-overview.html
https://docs.cloudera.com/runtime/7.3.1/srm-configuration/topics/srm-conf-examples.html

Cloudera Runtime Understanding SRM properties, their configuration and hierarchy

Properties follow a hierarchy, which is based on what prefix they have. In general, prefixed properties take
precedence over non-prefixed properties, and more specific prefixes take priority over less specific ones. That
is, replication level properties take precedence over both cluster and global level configurations. Cluster level
properties take precedence over global level configurations. Lastly, global level configurations are overridden by both
replication and cluster level properties.

Not all prefixes and configuration levels are valid for all properties. For example, most properties related to Kafka
client connections (bootstrap servers, aliases, security configurations and so on) are not relevant on a replication level.
While they can be set, they will not have an effect.

The following sections give more information on the available configuration levels/prefixes, give examples of what
types of properties can be set at each level, as well as recommendations on when and how to use each.

Global level

Global configuration is achieved by adding the property on its own, without a prefix. This is the most generic
configuration, with the lowest priority level. Global level configurations can also be regarded as fallback
configurations. This is a result of the property hierarchy. SRM will fall back and use a global level configuration if
there are no cluster or replication level configurations set for a specific property.

The following types of properties are accepted at this level by SRM:
SRM service level properties

These are SRM-specific configurations that are applied to SRM as a whole. For example, mm.r
est.protocol is a property typically set at this level, as it allows configuring the protocol used by
all replication specific Connect REST Servers run internally by the SRM Driver to use the same
protocol.

Kafka client connection properties

Client connection properties are used by SRM when it connects to a Kafka cluster. Client
connection properties can be set on a global level, however, not all connection related properties are
compatible with this level. For example, you can set bootstrap.servers on a global level, but because
in the majority of cases you will have a unique bootstrap server set for each individual connection,
setting this property on a global level is redundant.

As a result, Cloudera recommends that you only configure security related connection properties
at this level and only if you have multiple clusters in your deployment that use the same security
configuration. For example, you might have a deployment where SRM connects to many Kafka
clusters, and all of them use the same cipher suite. In a case like this you can set ssl.cipher.suites at
the global level a single time instead of configuring it on a per cluster basis.

Kafka Connect worker properties

These configurations are applied to all Kafka Connect workers run internally by the SRM Driver.
Any Connect worker property is supported at this level as long as it uses one of the following
prefixes:

• offset.storage
• config.storage
• status.storage
• key.converter
• value.converter
• header.converter
• task
• worker
• listeners.https

For example, you can configure offset.storage.replication.factor at this level to specify the
replication factor of the internal topic used to track the source offsets of SRM in all target clusters.

38

Cloudera Runtime Understanding SRM properties, their configuration and hierarchy

Other worker properties that do not use the listed prefixes can still be configured globally. However,
they must be configured on a global worker level using the workers. prefix.

Kafka Connect connector properties

These configurations are applied to all connectors in all replications run internally by the SRM
Driver. The Connect connector properties supported at this level are as follows:

• errors.retry.timeout
• errors.retry.delay.max.ms
• errors.tolerance
• errors.log.enable
• errors.log.include.messages
• config.properties.exclude
• config.properties.blacklist
• config.property.filter.class
• consumer.poll.timeout.ms
• admin.timeout.ms
• refresh.topics.enabled
• refresh.groups.enabled
• sync.topic.configs.enabled
• sync.topic.acls.enabled
• emit.heartbeats.interval.seconds
• emit.checkpoints.interval.seconds
• sync.group.offsets.enabled
• sync.group.offsets.interval.seconds
• replication.policy.class
• replication.policy.separator
• heartbeats.topic.replication.factor
• checkpoints.topic.replication.factor
• offset-syncs.topic.replication.factor
• offset.lag.max
• offset-syncs.topic.location
• connect.start.task.timeout.ms
• disable.source.topic.auto.creation
• copy.source.offset.in.header.enabled

For example, you can configure sync.group.offsets at this level to sync the translated consumer group offsets.

Other connector properties that are not listed can still be configured globally. However, they must be configured on a
global connector level using the connectors. prefix.

Global worker level

Global worker level configuration is achieved by using the workers. prefix. This level supports Kafka Connect worker
properties only. Properties specified with the workers. prefix are applied to all Connect workers run internally by the
SRM Driver.

The difference between the global worker level and the global level (no prefix) is that on a global level only a handful
of Connect worker properties are supported. The global worker level on the other hand supports all Connect worker
properties.

For example, scheduled.rebalance.max.delay.ms is not supported on a global level, it is not applied to all Connect
workers if it is set without a prefix. However, specifying the property on a global worker level is supported. That is,
when the property is set with the workers. prefix, it is applied to all workers.

39

Cloudera Runtime Understanding SRM properties, their configuration and hierarchy

Global connector level

Global connector level configuration can be achieved by prefixing the configuration property with the connectors.
prefix. This level supports Kafka Connect connector properties only. Properties that use this prefix are applied to all
Connect connectors run internally by the SRM Driver.

The difference between the global connector level and the global level (no prefix) is that on a global level only a
handful of Connect connector properties are supported. The global connector level on the other hand supports all
Connect connector properties.

The global connector level prefix can also be used to tweak all consumers and producers that are used by the SRM
Driver. For example, by using the connectors.consumer. prefix, any consumer property can be specified to tweak
the consumers used in the replications. Similarly, the connectors.producer.override. prefix can be used to override
producer configurations in the replications.

Cluster level

Cluster level configuration is achieved by prefixing the configuration property with a cluster alias specified
in Streams Replication Manager Cluster alias. Cluster level configurations have a higher priority than global
configurations. As a result, cluster level configurations take precedence over global configurations.

The following types of configurations are accepted at this level by SRM:
Kafka client connection properties

These configurations are used by SRM to connect to the Kafka cluster identified by the alias. SRM
is capable of generating connection configurations securely for most use-cases and Kafka clusters
either through automation, or with Kafka Credentials (AdministrationExternal AccountsKafka
Credentials). Cloudera recommends that you only use automation or Kafka credentials to configure
these properties.

For advanced use-cases, or when a specific connection configuration property is not available
through Kafka credentials, the cluster prefix can be used to specify the configuration property. For
example, the sasl.login.callback.handler.class property cannot be set using Kafka credentials. If
in your deployment you are using a third-party callback handler and need to specify it for SRM,
you can do so by adding sasl.login.callback.handler.class with the appropriate cluster prefixes to
Streams Replication Manager Replication Configs.

Kafka Connect worker properties

These configurations are applied to Kafka Connect workers which correspond to a replication
targeting the Kafka cluster identified by the alias prefix. On this level, all Connect worker
configurations are supported. For example, you can use offset.flush.timeout.ms to increase the flush
timeout to support high-traffic replication flows.

Replication level

Replication level configuration can be achieved by prefixing the configuration property with the name of the
replication. Replication level configurations have a higher priority than cluster or global level configurations. As a
result, replication level configurations take precedence over both cluster and global configurations.

The following types of configurations are accepted at this level by SRM:
Kafka Connect worker properties using the cluster->cluster.worker.prefix

These properties are applied to the Kafka Connect workers which correspond to the replication
identified by the prefix. On this level, all Connect worker configurations are supported. For
example, offset.flush.timeout.ms can be specified to increase the flush timeout to support high-
traffic replication flows.

Kafka Connect connector properties

These configurations are applied to all connectors in the replication identified by the prefix.

In addition to the replication specific connector configurations, you can also tweak the consumers
and producers that are used within a specific replication. For example, by using the cluster->clu

40

Cloudera Runtime Understanding SRM properties, their configuration and hierarchy

ster.consumer. prefix, any consumer property can be specified to tweak the consumers used in
the replication. Similarly, the cluster->cluster.producer.override. prefix can be used to override
producer configurations in the replication flow.

Related Information
Configuring properties not exposed in Cloudera Manager

41

https://docs.cloudera.com/runtime/7.3.1/srm-configuration/topics/srm-conf-additional-props.html

	Contents
	Overview
	Key Features
	Main Use Cases
	Streams Replication Manager use case architectures
	Highly available Kafka architectures
	Cluster migration architectures

	Streams Replication Manager Architecture
	Streams Replication Manager Driver
	Connect workers
	Connectors
	Task architecture and load-balancing
	Driver inter-node coordination

	Streams Replication Manager Service
	Remote Querying

	Streams Replication Manager monitoring and metrics
	Streams Replication Manager Service REST API
	Streams Replication Manager replication flows and replication policies
	Streams Replication Manager remote topic discovery
	Automatic group offset synchronization
	Understanding co-located and external clusters
	Understanding SRM properties, their configuration and hierarchy

