Use Case: Accessing Workflow Data and Storing in Artifact Directory
Learn about accessing Workflow Data and storing it in the Artifact Directory.
import os
import pandas as pd
import json
def run_tool(config, args):
# ✅ Read input from workflow data directory
workflow_data_dir = os.environ.get('WORKFLOW_DATA_DIRECTORY', '/workflow_data')
input_file = os.path.join(workflow_data_dir, 'sales_data.csv')
if not os.path.exists(input_file):
return {"error": f"Input file not found: {input_file}"}
# Process data
df = pd.read_csv(input_file)
summary = df.groupby('category').sum()
# ✅ Write output to artifact file directory (using relative path)
output_file = "sales_summary.csv"
summary.to_csv(output_file, index=True)
# ✅ Write JSON report to artifact file directory
report_file = "report.json"
with open(report_file, 'w') as f:
json.dump({
"status": "success",
"total_rows": len(df),
"categories": summary.index.tolist()
}, f, indent=2)
# Both files are automatically visible in Agent Studio UI
return {
"status": "success",
"output_files": [output_file, report_file],
"message": "Files created in artifact file directory"
}
