Developing Apache Spark ApplicationsPDF version

Spark SQL example

This example demonstrates how to use spark.sql to create and load two tables and select rows from the tables into two DataFrames. The next steps use the DataFrame API to filter the rows for salaries greater than 150,000 from one of the tables and shows the resulting DataFrame. Then the two DataFrames are joined to create a third DataFrame. Finally the new DataFrame is saved to a Hive table.

  1. Copy the Hue sample_07.csv and sample_08.csv files to your object store in a location accessible by the Spark cluster:
    hdfs dfs -put /opt/cloudera/parcels/CDH/lib/hue/apps/beeswax/data/sample_0* s3a://<bucket_name>/
  2. Launch spark-shell:
    spark-shell --conf "spark.yarn.access.hadoopFileSystems=s3a://<bucket_name>"
  3. Create Hive tables sample_07 and sample_08:
    scala> spark.sql("CREATE EXTERNAL TABLE sample_07 (code string,description string,total_emp int,salary int) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TextFile LOCATION 's3a://<bucket_name>/s07/'")
    scala> spark.sql("CREATE EXTERNAL TABLE sample_08 (code string,description string,total_emp int,salary int) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TextFile LOCATION 's3a://<bucket_name>/s08/'")
  4. In another session, launch Beeline:
    beeline -u "jdbc:hive2://<HiveServer2_host>:10001/default;principal=hive/_HOST@CLOUDERA.SITE;transportMode=http;httpPath=cliservice"
  5. In Beeline, show the Hive tables:
    0: jdbc:hive2://hs2.cloudera.site:> show tables;
    +------------+--+
    |  tab_name  |
    +------------+--+
    | sample_07  |
    | sample_08  |
    +------------+--+
  6. In the Spark shell, load the data from the CSV files into the tables:
    scala> spark.sql("LOAD DATA INPATH 's3a://<bucket_name>/sample_07.csv' OVERWRITE INTO TABLE sample_07")
    scala> spark.sql("LOAD DATA INPATH 's3a://<bucket_name>/sample_08.csv' OVERWRITE INTO TABLE sample_08")
  7. Create DataFrames containing the contents of the sample_07 and sample_08 tables:
    scala> val df_07 = spark.sql("SELECT * from sample_07")
    scala> val df_08 = spark.sql("SELECT * from sample_08")
  8. Show all rows in df_07 with salary greater than 150,000:
    scala> df_07.filter(df_07("salary") > 150000).show()
    The output should be:
    +-------+--------------------+---------+------+
    |   code|         description|total_emp|salary|
    +-------+--------------------+---------+------+
    |11-1011|    Chief executives|   299160|151370|
    |29-1022|Oral and maxillof...|     5040|178440|
    |29-1023|       Orthodontists|     5350|185340|
    |29-1024|     Prosthodontists|      380|169360|
    |29-1061|   Anesthesiologists|    31030|192780|
    |29-1062|Family and genera...|   113250|153640|
    |29-1063| Internists, general|    46260|167270|
    |29-1064|Obstetricians and...|    21340|183600|
    |29-1067|            Surgeons|    50260|191410|
    |29-1069|Physicians and su...|   237400|155150|
    +-------+--------------------+---------+------+
  9. Create the DataFrame df_09 by joining df_07 and df_08, retaining only the code and description columns.
    scala> val df_09 = df_07.join(df_08, df_07("code") === df_08("code")).select(df_07.col("code"),df_07.col("description"))
    scala> df_09.orderBy($"code".asc).show()
    The new DataFrame looks like:
    +-------+--------------------+
    |   code|         description|
    +-------+--------------------+
    |00-0000|     All Occupations|
    |11-0000|Management occupa...|
    |11-1011|    Chief executives|
    |11-1021|General and opera...|
    |11-1031|         Legislators|
    |11-2011|Advertising and p...|
    |11-2021|  Marketing managers|
    |11-2022|      Sales managers|
    |11-2031|Public relations ...|
    |11-3011|Administrative se...|
    |11-3021|Computer and info...|
    |11-3031|  Financial managers|
    |11-3041|Compensation and ...|
    |11-3042|Training and deve...|
    |11-3049|Human resources m...|
    |11-3051|Industrial produc...|
    |11-3061| Purchasing managers|
    |11-3071|Transportation, s...|
    |11-9011|Farm, ranch, and ...|
    |11-9012|Farmers and ranchers|
    +-------+--------------------+
  10. Save DataFrame df_09 as the Hive table sample_09:
    scala> df_09.write.option("path","s3a://<bucket_name>/s09/").saveAsTable("sample_09")
  11. In Beeline, show the Hive tables:
    0: jdbc:hive2://hs2.cloudera.site:> show tables;
    +------------+--+
    |  tab_name  |
    +------------+--+
    | sample_07  |
    | sample_08  |
    | sample_09  |
    +------------+--+

Here is an equivalent program in Python, that you could submit using spark-submit:

from pyspark import SparkContext, SparkConf, HiveContext

if __name__ == "__main__":

  # create Spark context with Spark configuration
  conf = SparkConf().setAppName("Data Frame Join")
  sc = SparkContext(conf=conf)
  sqlContext = HiveContext(sc)
  df_07 = sqlContext.sql("SELECT * from sample_07")
  df_07.filter(df_07.salary > 150000).show()
  df_08 = sqlContext.sql("SELECT * from sample_08")
  tbls = sqlContext.sql("show tables")
  tbls.show()
  df_09 = df_07.join(df_08, df_07.code == df_08.code).select(df_07.code,df_07.description)
  df_09.show()
  df_09.write.saveAsTable("sample_09")
  tbls = sqlContext.sql("show tables")
  tbls.show()