11. Determine YARN and MapReduce Memory Configuration Settings

 11.1. Manually Calculate YARN and MapReduce Memory Configuration Settings

This section describes how to manually calculate YARN and MapReduce memory allocation settings based on the node hardware specifications.

YARN takes into account all of the available resources on each machine in the cluster. Based on the available resources, YARN negotiates resource requests from applications (such as MapReduce) running in the cluster. YARN then provides processing capacity to each application by allocating Containers. A Container is the basic unit of processing capacity in YARN, and is an encapsulation of resource elements (memory, CPU, etc.).

In a Hadoop cluster, it is vital to balance the usage of memory (RAM), processors (CPU cores) and disks so that processing is not constrained by any one of these cluster resources. As a general recommendation, allowing for two Containers per disk and per core gives the best balance for cluster utilization.

When determining the appropriate YARN and MapReduce memory configurations for a cluster node, start with the available hardware resources. Specifically, note the following values on each node:

  • RAM (Amount of memory)

  • CORES (Number of CPU cores)

  • DISKS (Number of disks)

The total available RAM for YARN and MapReduce should take into account the Reserved Memory. Reserved Memory is the RAM needed by system processes and other Hadoop processes, such as HBase.

Reserved Memory = Reserved for stack memory + Reserved for HBase memory (If HBase is on the same node)

Use the following table to determine the Reserved Memory per node.

Reserved Memory Recommendations

Total Memory per Node Recommended Reserved System Memory Recommended Reserved HBase Memory
4 GB 1 GB 1 GB
8 GB 2 GB 1 GB
16 GB 2 GB 2 GB
24 GB 4 GB 4 GB
48 GB 6 GB 8 GB
64 GB 8 GB 8 GB
72 GB 8 GB 8 GB
96 GB 12 GB 16 GB
128 GB 24 GB 24 GB
256 GB 32 GB 32 GB
512 GB 64 GB 64 GB

The next calculation is to determine the maximum number of Containers allowed per node. The following formula can be used:

# of Containers = minimum of (2*CORES, 1.8*DISKS, (Total available RAM) / MIN_CONTAINER_SIZE)

Where MIN_CONTAINER_SIZE is the minimum Container size (in RAM). This value is dependent on the amount of RAM available -- in smaller memory nodes, the minimum Container size should also be smaller. The following table outlines the recommended values:

Total RAM per Node Recommended Minimum Container Size
Less than 4 GB 256 MB
Between 4 GB and 8 GB 512 MB
Between 8 GB and 24 GB 1024 MB
Above 24 GB 2048 MB

The final calculation is to determine the amount of RAM per container:

RAM-per-Container = maximum of (MIN_CONTAINER_SIZE, (Total Available RAM) / Containers))

With these calculations, the YARN and MapReduce configurations can be set:

Configuration File Configuration Setting Value Calculation
yarn-site.xml yarn.nodemanager.resource.memory-mb = Containers * RAM-per-Container
yarn-site.xml yarn.scheduler.minimum-allocation-mb = RAM-per-Container
yarn-site.xml yarn.scheduler.maximum-allocation-mb = containers * RAM-per-Container
mapred-site.xml mapreduce.map.memory.mb = RAM-per-Container
mapred-site.xml mapreduce.reduce.memory.mb = 2 * RAM-per-Container
mapred-site.xml mapreduce.map.java.opts = 0.8 * RAM-per-Container
mapred-site.xml mapreduce.reduce.java.opts = 0.8 * 2 * RAM-per-Container
yarn-site.xml (check) yarn.app.mapreduce.am.resource.mb = 2 * RAM-per-Container
yarn-site.xml (check) yarn.app.mapreduce.am.command-opts = 0.8 * 2 * RAM-per-Container

Note: After installation, both yarn-site.xml and mapred-site.xml are located in the /etc/hadoop/conf folder.

Examples

Cluster nodes have 12 CPU cores, 48 GB RAM, and 12 disks.

Reserved Memory = 6 GB reserved for system memory + (if HBase) 8 GB for HBase

Min Container size = 2 GB

If there is no HBase:

# of Containers = minimum of (2*12, 1.8* 12, (48-6)/2) = minimum of (24, 21.6, 21) = 21

RAM-per-Container = maximum of (2, (48-6)/21) = maximum of (2, 2) = 2

Configuration Value Calculation
yarn.nodemanager.resource.memory-mb = 21 * 2 = 42*1024 MB
yarn.scheduler.minimum-allocation-mb = 2*1024 MB
yarn.scheduler.maximum-allocation-mb = 21 * 2 = 42*1024 MB
mapreduce.map.memory.mb = 2*1024 MB
mapreduce.reduce.memory.mb = 2 * 2 = 4*1024 MB
mapreduce.map.java.opts = 0.8 * 2 = 1.6*1024 MB
mapreduce.reduce.java.opts = 0.8 * 2 * 2 = 3.2*1024 MB
yarn.app.mapreduce.am.resource.mb = 2 * 2 = 4*1024 MB
yarn.app.mapreduce.am.command-opts = 0.8 * 2 * 2 = 3.2*1024 MB

If HBase is included:

# of Containers = minimum of (2*12, 1.8* 12, (48-6-8)/2) = minimum of (24, 21.6, 17) = 17

RAM-per-Container = maximum of (2, (48-6-8)/17) = maximum of (2, 2) = 2

Configuration Value Calculation
yarn.nodemanager.resource.memory-mb = 17 * 2 = 34*1024 MB
yarn.scheduler.minimum-allocation-mb = 2*1024 MB
yarn.scheduler.maximum-allocation-mb = 17 * 2 = 34*1024 MB
mapreduce.map.memory.mb = 2*1024 MB
mapreduce.reduce.memory.mb = 2 * 2 = 4*1024 MB
mapreduce.map.java.opts = 0.8 * 2 = 1.6*1024 MB
mapreduce.reduce.java.opts = 0.8 * 2 * 2 = 3.2*1024 MB
yarn.app.mapreduce.am.resource.mb = 2 * 2 = 4*1024 MB
yarn.app.mapreduce.am.command-opts = 0.8 * 2 * 2 = 3.2*1024 MB

 11.2. Use the YARN Utility Script to Calculate YARN and MapReduce Memory Configuration Settings

This section describes how to use the yarn-util.py Python script to calculate YARN and MapReduce memory allocation settings based on the node hardware specifications. The yarn-util.py script is included in the HDP companion files.

Running the Script

To run the yarn-util.py script, execute the following command from the folder containing the script:

python yarn-util.py <options>

With the following options:

Option Description
-c CORES The number of cores on each host.
-m MEMORY The amount of memory on each host in GB.
-d DISKS The number of disks on each host.
-k HBASE "True" if HBase is installed, "False" if not.

Note: You can also use the -h or --help option to display a Help message that describes the options.

Example

Running the following command:

python yarn-utils.py -c 16 -m 64 -d 4 -k True

Would return:

 Using cores=16 memory=64GB disks=4 hbase=True
 Profile: cores=16 memory=64GB reserved=16GB usableMem=48GB disks=4
 Num Container=32
 Container Ram=1536MB
 Used Ram=48GB
 Unused Ram=16GB
 yarn.scheduler.minimum-allocation-mb=1536
 yarn.scheduler.maximum-allocation-mb=49152
 yarn.nodemanager.resource.memory-mb=49152
 mapreduce.map.memory.mb=1536
 mapreduce.map.java.opts=-Xmx1228m
 mapreduce.reduce.memory.mb=3072
 mapreduce.reduce.java.opts=-Xmx2457m
 yarn.app.mapreduce.am.resource.mb=3072
 yarn.app.mapreduce.am.command-opts=-Xmx2457m
 mapreduce.task.io.sort.mb=614

loading table of contents...