You see how to create simple tables, insert the data, and join the tables using a
materialized view. You run the query, and the optimizer takes advantage of the
precomputation performed by the materialized view to speed response time.
-
Create two tables:
CREATE TABLE emps (
empid INT,
deptno INT,
name VARCHAR(256),
salary FLOAT,
hire_date TIMESTAMP);
CREATE TABLE depts (
deptno INT,
deptname VARCHAR(256),
locationid INT);
-
Insert some data into the tables for example purposes:
INSERT INTO TABLE emps VALUES (10001,101,'jane doe',250000,'2018-01-10');
INSERT INTO TABLE emps VALUES (10002,100,'somporn klailee',210000,'2017-12-25');
INSERT INTO TABLE emps VALUES (10003,200,'jeiranan thongnopneua',175000,'2018-05-05');
INSERT INTO TABLE depts VALUES (100,'HR',10);
INSERT INTO TABLE depts VALUES (101,'Eng',11);
INSERT INTO TABLE depts VALUES (200,'Sup',20);
-
Create a materialized view to join the tables:
CREATE MATERIALIZED VIEW mv1
AS SELECT empid, deptname, hire_date
FROM emps JOIN depts
ON (emps.deptno = depts.deptno)
WHERE hire_date >= '2017-01-01';
-
Run a query that takes advantage of the precomputation performed by the
materialized view:
SELECT empid, deptname
FROM emps
JOIN depts
ON (emps.deptno = depts.deptno)
WHERE hire_date >= '2017-01-01'
AND hire_date <= '2019-01-01';
Output is:
+--------+-----------+
| empid | deptname |
+--------+-----------+
| 10003 | Sup |
| 10002 | HR |
| 10001 | Eng |
+--------+-----------+