Accessing HDFS Files from Spark
This section contains information on running Spark jobs over HDFS data.
Specifying Compression
To add a compression library to Spark, you can use the --jars
option. For an example, see "Adding
Libraries to Spark" in this guide.
To save a Spark RDD to HDFS in compressed format, use code similar to the following (the example uses the GZip algorithm):
rdd.saveAsHadoopFile("/tmp/spark_compressed", "org.apache.hadoop.mapred.TextOutputFormat", compressionCodecClass="org.apache.hadoop.io.compress.GzipCodec")
For more information about supported compression algorithms, see "Configuring HDFS Compression" in the HDP Data Storage guide.
Accessing HDFS from PySpark
When accessing an HDFS file from PySpark, you must set HADOOP_CONF_DIR
in an environment variable,
as in the following example:
$ export HADOOP_CONF_DIR=/etc/hadoop/conf $ pyspark $ >>>lines = sc.textFile("hdfs://namenode.example.com:8020/tmp/PySparkTest/file-01") .......
If HADOOP_CONF_DIR
is not set properly, you might
see an error similar to the following:
2016-08-22 00:27:06,046|t1.machine|INFO|1580|140672245782272|MainThread|Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe. 2016-08-22 00:27:06,047|t1.machine|INFO|1580|140672245782272|MainThread|: org.apache.hadoop.security.AccessControlException: SIMPLE authentication is not enabled. Available:[TOKEN, KERBEROS] 2016-08-22 00:27:06,047|t1.machine|INFO|1580|140672245782272|MainThread|at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) 2016-08-22 00:27:06,047|t1.machine|INFO|1580|140672245782272|MainThread|at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57) 2016-08-22 00:27:06,048|t1.machine|INFO|1580|140672245782272|MainThread|at {code}