Apache Kudu OverviewPDF version

Example use cases

Kudu gives you capability to stream inputs with near real-time availability. You can run time-series applications with varying access patterns, and develop predective learning models. Kudu gives you freedom to access and query data from any legacy sources or formats using Impala.

A common business challenge is one where new data arrives rapidly and constantly, and the same data needs to be available in near real time for reads, scans, and updates. Kudu offers the powerful combination of fast inserts and updates with efficient columnar scans to enable real-time analytics use cases on a single storage layer.

A time-series schema is one in which data points are organized and keyed according to the time at which they occurred. This can be useful for investigating the performance of metrics over time or attempting to predict future behavior based on past data. For instance, time-series customer data might be used both to store purchase click-stream history and to predict future purchases, or for use by a customer support representative. While these different types of analysis are occurring, inserts and mutations might also be occurring individually and in bulk, and become available immediately to read workloads. Kudu can handle all of these access patterns simultaneously in a scalable and efficient manner.

Kudu is a good fit for time-series workloads for several reasons. With Kudu's support for hash-based partitioning, combined with its native support for compound row keys, it is simple to set up a table spread across many servers without the risk of "hotspotting" that is commonly observed when range partitioning is used. Kudu's columnar storage engine is also beneficial in this context, because many time-series workloads read only a few columns, as opposed to the whole row.

In the past, you might have needed to use multiple datastores to handle different data access patterns. This practice adds complexity to your application and operations, and duplicates your data, doubling (or worse) the amount of storage required. Kudu can handle all of these access patterns natively and efficiently, without the need to off-load work to other datastores.

Data scientists often develop predictive learning models from large sets of data. The model and the data might need to be updated or modified often as the learning takes place or as the situation being modeled changes. In addition, the scientist might want to change one or more factors in the model to see what happens over time. Updating a large set of data stored in files in HDFS is resource-intensive, as each file needs to be completely rewritten. In Kudu, updates happen in near real time. The scientist can tweak the value, re-run the query, and refresh the graph in seconds or minutes, rather than hours or days. In addition, batch or incremental algorithms can be run across the data at any time, with near-real-time results.

Companies generate data from multiple sources and store it in a variety of systems and formats. For instance, some of your data might be stored in Kudu, some in a traditional RDBMS, and some in files in HDFS. You can access and query all of these sources and formats using Impala, without the need to change your legacy systems.