Managing YARN Docker ContainersPDF version

Docker on YARN example: Spark-on-Docker-on-YARN

Learn how to submit a Spark application to run in Docker containers on YARN.

  1. Prepare a UNIX-based Docker image with Java and Python installed. For example, use any arbitrary docker image satisfying this condition or the one built from the following Dockerfile:
    FROM centos
    RUN yum -y install python36
    RUN ln -s /usr/bin/python3.6 /usr/local/bin/python
    RUN yum -y install java-1.8.0-openjdk
    ENV JAVA_HOME /usr/lib/jvm/jre
    
  2. In Cloudera Manager, select the YARN service.
  3. Click the Configuration tab.
  4. Use the Docker on YARN filter.
  5. Find the Trusted Registries for Docker Containers property.
  6. Add the registry of the docker image to the list of trusted registries.
  7. Find the Allowed Read-Only Mounts for Docker Containers property.
  8. Add /opt/cloudera/parcels, /etc/hadoop and /etc/passwd to the list of allowed read-only mounts.
  9. Click Save Changes.
  10. Restart the YARN service using Cloudera Manager.
  11. Select an arbitrary python Spark application.

    For example an application that initializes the SparkContext object and then prints the python version:

    import sys
    from pyspark import SparkConf, SparkContext
    conf = SparkConf().setAppName("Version app").setMaster("yarn")
    sc = SparkContext(conf=conf)
    if sys.version_info[0] == 3:
        print(“Python 3”)
    elif sys.version_info[0] == 2:
       print(“Python 2”)
    
  12. Submit the python script to the cluster by typing the following command:
    spark-submit \
      --master yarn \
      --deploy-mode cluster \
      --conf spark.yarn.appMasterEnv.YARN_CONTAINER_RUNTIME_TYPE=docker \
      --conf spark.yarn.appMasterEnv.YARN_CONTAINER_RUNTIME_DOCKER_IMAGE=registry/image:tag \
      --conf spark.yarn.appMasterEnv.YARN_CONTAINER_RUNTIME_DOCKER_MOUNTS=/etc/passwd:/etc/passwd:ro,/opt/cloudera/parcels:/opt/cloudera/parcels:ro,/etc/krb5.conf:/etc/krb5.conf:ro \   
      --conf spark.executorEnv.YARN_CONTAINER_RUNTIME_TYPE=docker \
      --conf spark.executorEnv.YARN_CONTAINER_RUNTIME_DOCKER_IMAGE=registry/image:tag \
      --conf spark.executorEnv.YARN_CONTAINER_RUNTIME_DOCKER_MOUNTS="/etc/passwd:/etc/passwd:ro,/opt/cloudera/parcels/:/opt/cloudera/parcels/:ro,/etc/krb5.conf:/etc/krb5.conf:ro" \ 
     <path to python script>
    
  13. Check the output of the script.
    1. Open the Spark history Server web UI.
    2. Search for the just submitted job.