Running Apache Spark ApplicationsPDF version

Configuring Spark Applications

You can specify Spark application configuration properties as follows:

  • Pass properties using the --conf command-line switch; for example:
    spark-submit \
    --class com.cloudera.example.YarnExample \
    --master yarn \
    --deploy-mode cluster \
    --conf "spark.eventLog.dir=hdfs:///user/spark/eventlog" \
    lib/yarn-example.jar \
    10
    
  • Specify properties in spark-defaults.conf.
  • Pass properties directly to the SparkConf used to create the SparkContext in your Spark application; for example:

    • Scala:

      val conf = new SparkConf().set("spark.dynamicAllocation.initialExecutors", "5")
      val sc = new SparkContext(conf)
      
    • Python:

      from pyspark import SparkConf, SparkContext
      from pyspark.sql import SQLContext
      conf = (SparkConf().setAppName('Application name'))
      conf.set('spark.hadoop.avro.mapred.ignore.inputs.without.extension', 'false')
      sc = SparkContext(conf = conf)
      sqlContext = SQLContext(sc)
      

The order of precedence in configuration properties is:

  1. Properties passed to SparkConf.
  2. Arguments passed to spark-submit, spark-shell, or pyspark.
  3. Properties set in spark-defaults.conf.

For more information, see Spark Configuration.