MLflow transformers

This is an example of how MLflow transformers can be supported in Cloudera AI.

This example shows how to implement a translation workflow using a translation model.

  1. Save the following as a file, for example, named mlflowtest.py.
    #!pip3 install torch transformers torchvision tensorflow
        
        import mlflow
        from mlflow.models import infer_signature
        from mlflow.transformers import generate_signature_output
        from transformers import pipeline
        
        en_to_de = pipeline("translation_en_to_de")
        
        data = "MLflow is great!"
        output = generate_signature_output(en_to_de, data)
        #signature = infer_signature(data, output)
        
        with mlflow.start_run() as run:
        mlflow.transformers.log_model(
        transformers_model=en_to_de,
        artifact_path="english_to_german_translator",
        input_example=data,
        registered_model_name="entodetranslator",
        )
        
        
        model_uri = f"runs:/{run.info.run_id}/english_to_german_translator"
        loaded = mlflow.pyfunc.load_model(model_uri)
        
        print(loaded.predict(data))
  2. In the Cloudera AI Registry page, find the entodetranslator model. Deploy the model.
  3. Make a request using the following payload:
    {
      "dataframe_split": {
        "columns": [
          "data"
        ],
        "data": [
          [
            "MLflow is great!"
          ]
        ]
      }
    }
  4. In a session, run the mlflowtest.py file. It should print the following output.
    print(loaded.predict(data))
    
    ['MLflow ist großartig!']