Testing ML Runtime GPU Setup
You can use the following simple examples to test whether the new ML Runtime is able to leverage GPUs as expected.
- Go to a project that is using the ML Runtimes Nvdia GPU edition and click Open Workbench.
- Launch a new session with GPUs.
- Run the following command in the workbench command prompt to verify that the
driver was installed correctly:
! /usr/bin/nvidia-smi
- Use any of the following code samples to confirm that the new engine works with common deep learning libraries.
Pytorch
!pip3 install torch==1.4.0 from torch import cuda assert cuda.is_available() assert cuda.device_count() > 0 print(cuda.get_device_name(cuda.current_device()))
Tensorflow
!pip3 install tensorflow-gpu==2.1.0 from tensorflow.python.client import device_lib assert 'GPU' in str(device_lib.list_local_devices()) device_lib.list_local_devices()
Keras
!pip3 install keras from keras import backend assert len(backend.tensorflow_backend._get_available_gpus()) > 0 print(backend.tensorflow_backend._get_available_gpus())